A Coding Framework and Benchmark Towards Low-Bitrate Video Understanding

Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 19. Juli, Seite 5852-5872
1. Verfasser: Tian, Yuan (VerfasserIn)
Weitere Verfasser: Lu, Guo, Yan, Yichao, Zhai, Guangtao, Chen, Li, Gao, Zhiyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368670198
003 DE-627
005 20240703234502.0
007 cr uuu---uuuuu
008 240222s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3367879  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM368670198 
035 |a (NLM)38376963 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Yuan  |e verfasserin  |4 aut 
245 1 2 |a A Coding Framework and Benchmark Towards Low-Bitrate Video Understanding 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video compression is indispensable to most video analysis systems. Despite saving the transportation bandwidth, it also deteriorates downstream video understanding tasks, especially at low-bitrate settings. To systematically investigate this problem, we first thoroughly review the previous methods, revealing that three principles, i.e., task-decoupled, label-free, and data-emerged semantic prior, are critical to a machine-friendly coding framework but are not fully satisfied so far. In this paper, we propose a traditional-neural mixed coding framework that simultaneously fulfills all these principles, by taking advantage of both traditional codecs and neural networks (NNs). On one hand, the traditional codecs can efficiently encode the pixel signal of videos but may distort the semantic information. On the other hand, highly non-linear NNs are proficient in condensing video semantics into a compact representation. The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved w.r.t. the coding procedure, which is spontaneously learned from unlabeled data in a self-supervised manner. The videos collaboratively decoded from two streams (codec and NN) are of rich semantics, as well as visually photo-realistic, empirically boosting several mainstream downstream video analysis task performances without any post-adaptation procedure. Furthermore, by introducing the attention mechanism and adaptive modeling scheme, the video semantic modeling ability of our approach is further enhanced. Fianlly, we build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach. All codes, data, and models will be open-sourced for facilitating future research 
650 4 |a Journal Article 
700 1 |a Lu, Guo  |e verfasserin  |4 aut 
700 1 |a Yan, Yichao  |e verfasserin  |4 aut 
700 1 |a Zhai, Guangtao  |e verfasserin  |4 aut 
700 1 |a Chen, Li  |e verfasserin  |4 aut 
700 1 |a Gao, Zhiyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 19. Juli, Seite 5852-5872  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:19  |g month:07  |g pages:5852-5872 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3367879  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 19  |c 07  |h 5852-5872