Continuous Topological Transition and Bandgap Tuning in Ethynylene-Linked Acene π-Conjugated Polymers through Mechanical Strain

© 2024 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 36(2024), 3 vom: 13. Feb., Seite 1395-1404
1. Verfasser: Bhattacharjee, Rameswar (VerfasserIn)
Weitere Verfasser: Kertesz, Miklos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2024 The Authors. Published by American Chemical Society.
By variation of the chemical repeat units of conjugated polymers, only discrete tuning of essential physical parameters is possible. A unique property of a class of π-conjugated polymers, where polycyclic aromatic hydrocarbons are linked via ethynylene linkers, is their topological aromatic to quinoid phase transition discovered recently by Cirera et al. and González-Herrero et al., which is controllable in discrete steps by chemical variations. We have discovered by means of density functional theory computations that such a phase transition can be achieved by applying continuous variations of longitudinal strain, allowing us to tune the bond length alternation and bandgap. At a specific strain value, the bandgap becomes zero due to an orbital level crossing between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Our hypothesis provides a perspective on the design of organic electronic materials and provides a novel insight into the properties of a continuous phase transition in topological semiconducting polymers
Beschreibung:Date Revised 21.02.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.3c02547