|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM368622797 |
003 |
DE-627 |
005 |
20240303231944.0 |
007 |
cr uuu---uuuuu |
008 |
240219s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c03029
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1315.xml
|
035 |
|
|
|a (DE-627)NLM368622797
|
035 |
|
|
|a (NLM)38372214
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yuan, Mingyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Colloidal Chemistry in Water Treatment
|b The Effect of Ca2+ on the Interaction between Humic Acid and Poly(diallyldimethylammonium chloride) (PDADMAC)
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 03.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The complexation of humic acid (HA), as a major component of natural organic matter (NOM) in raw water, with polycations is a key step in the water treatment process. At sufficiently high addition of a polycation, it leads to neutralization of the formed complexes and precipitation. In this work, we studied the effect of the presence of Ca2+ ions on this process, with poly(diallyldimethylammonium chloride) (PDADMAC) as a polycation. This was done by determining the phase behavior and characterizing the structures in solution by light scattering and small-angle neutron scattering (SANS). We observe that with increasing Ca2+ concentration, the phase boundaries of the precipitation region shift to a lower PDADMAC concentration, which coincides well with a shift of the ζ-potential of the aggregates in solution. Light scattering shows the formation of aggregates of a 120-150 nm radius, and SANS shows that Ca2+ addition promotes a compaction in the size range of 10-50 nm within these aggregates. This agrees well with the observation of more densely packed precipitates by confocal microscopy in the presence of Ca2+. Following the precipitation kinetics by turbidimetry shows a marked speeding up of the process already in the presence of rather small Ca2+ concentrations of 1 mg/L. It can be stated that the presence of Ca2+ during the complexation process of HA with a polycation has a marked effect on phase behavior and precipitation kinetics of the formed aggregates. In general, the presence of Ca2+ facilitates the process largely already at rather low concentrations, and this appears to be linked to a compaction of the formed structures in the mesoscopic size range of about 10-50 nm. These findings should be of significant importance for tailoring the flocculation process in water treatment, which is a highly important process in delivering drinking water of sufficient quality to humans
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Bustamante, Heriberto
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mahmoudi, Najet
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gradzielski, Michael
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 40(2024), 8 vom: 27. Feb., Seite 4108-4121
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2024
|g number:8
|g day:27
|g month:02
|g pages:4108-4121
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c03029
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2024
|e 8
|b 27
|c 02
|h 4108-4121
|