Impact of COVID-19 on public social life and mental health : a statistical study of google trends data from the USA

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 3 vom: 29., Seite 581-605
1. Verfasser: Roy, Archi (VerfasserIn)
Weitere Verfasser: Deb, Soudeep, Chakarwarti, Divya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article ARMA-GARCH models changepoint detection coronavirus pandemic google search volume infodemiology
LEADER 01000caa a22002652c 4500
001 NLM36860330X
003 DE-627
005 20250305195910.0
007 cr uuu---uuuuu
008 240219s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2164562  |2 doi 
028 5 2 |a pubmed25n1228.xml 
035 |a (DE-627)NLM36860330X 
035 |a (NLM)38370267 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Roy, Archi  |e verfasserin  |4 aut 
245 1 0 |a Impact of COVID-19 on public social life and mental health  |b a statistical study of google trends data from the USA 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.02.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The COVID-19 pandemic has caused a significant disruption in the social lives and mental health of people across the world. This study aims to asses the effect of using internet search volume data. We categorize the widely searched keywords on the internet in several categories, which are relevant in analyzing the public mental health status. Corresponding to each category of keywords, we conduct an appropriate statistical analysis to identify significant changes in the search pattern during the course of the pandemic. Binary segmentation method of changepoint detection, along with the combination of ARMA-GARCH models are utilized in this analysis. It helps us detect how people's behavior changed in phases and whether the severity of the pandemic brought forth those shifts in behaviors. Interestingly, we find that rather than the severity of the outbreak, the long duration of the pandemic has affected the public health status more. The phases, however, align well with the so-called COVID-19 waves and are consistent for different aspects of social and mental health. We further observe that the results are typically similar for different states as well 
650 4 |a Journal Article 
650 4 |a ARMA-GARCH models 
650 4 |a changepoint detection 
650 4 |a coronavirus pandemic 
650 4 |a google search volume 
650 4 |a infodemiology 
700 1 |a Deb, Soudeep  |e verfasserin  |4 aut 
700 1 |a Chakarwarti, Divya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 3 vom: 29., Seite 581-605  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:51  |g year:2024  |g number:3  |g day:29  |g pages:581-605 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2164562  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 3  |b 29  |h 581-605