CLASH : Complementary Learning with Neural Architecture Search for Gait Recognition

Gait recognition, which aims at identifying individuals by their walking patterns, has achieved great success based on silhouette. The binary silhouette sequence encodes the walking pattern within the sparse boundary representation. Therefore, most pixels in the silhouette are under-sensitive to the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2024) vom: 16. Feb.
1. Verfasser: Dou, Huanzhang (VerfasserIn)
Weitere Verfasser: Zhang, Pengyi, Zhao, Yuhan, Jin, Lu, Li, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368537412
003 DE-627
005 20240219232118.0
007 cr uuu---uuuuu
008 240217s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3360870  |2 doi 
028 5 2 |a pubmed24n1299.xml 
035 |a (DE-627)NLM368537412 
035 |a (NLM)38363666 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dou, Huanzhang  |e verfasserin  |4 aut 
245 1 0 |a CLASH  |b Complementary Learning with Neural Architecture Search for Gait Recognition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Gait recognition, which aims at identifying individuals by their walking patterns, has achieved great success based on silhouette. The binary silhouette sequence encodes the walking pattern within the sparse boundary representation. Therefore, most pixels in the silhouette are under-sensitive to the walking pattern since the sparse boundary lacks dense spatial-temporal information, which is suitable to be represented with dense texture. To enhance the sensitivity to the walking pattern while maintaining the robustness of recognition, we present a Complementary Learning with neural Architecture SearcH (CLASH) framework, consisting of walking pattern sensitive gait descriptor named dense spatial-temporal field (DSTF) and neural architecture search based complementary learning (NCL). Specifically, DSTF transforms the representation from the sparse binary boundary into the dense distance-based texture, which is sensitive to the walking pattern at the pixel level. Further, NCL presents a task-specific search space for complementary learning, which mutually complements the sensitivity of DSTF and the robustness of the silhouette to represent the walking pattern effectively. Extensive experiments demonstrate the effectiveness of the proposed methods under both in-the-lab and in-the-wild scenarios. On CASIA-B, we achieve rank-1 accuracy of 98.8%, 96.5%, and 89.3% under three conditions. On OU-MVLP, we achieve rank-1 accuracy of 91.9%. Under the latest in-the-wild datasets, we outperform the latest silhouette-based methods by 16.3% and 19.7% on Gait3D and GREW, respectively 
650 4 |a Journal Article 
700 1 |a Zhang, Pengyi  |e verfasserin  |4 aut 
700 1 |a Zhao, Yuhan  |e verfasserin  |4 aut 
700 1 |a Jin, Lu  |e verfasserin  |4 aut 
700 1 |a Li, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2024) vom: 16. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:16  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3360870  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 16  |c 02