On the Mechanism of Self-Assembly of Fibrinogen in Thrombin-free Aqueous Solution

Fibrinogen dissolved in 0.12 M aqueous NaCl solution at a pH of 6.6 exhibits self-assembly in response to a lowering of the NaCl concentration to values equal to or lower than 60 mM. As has been established in a preceding work (Langmuir 2019, 35, and 12113), a characteristic signature of the self-as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 8 vom: 27. Feb., Seite 4152-4163
1. Verfasser: Saha, Sanjib (VerfasserIn)
Weitere Verfasser: Büngeler, Anne, Hense, Dominik, Strube, Oliver I, Huber, Klaus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Fibrinogen dissolved in 0.12 M aqueous NaCl solution at a pH of 6.6 exhibits self-assembly in response to a lowering of the NaCl concentration to values equal to or lower than 60 mM. As has been established in a preceding work (Langmuir 2019, 35, and 12113), a characteristic signature of the self-assembly triggered by a drop in ionic strength is the formation of large globular particles. Growth of these particles most likely obeys a coalescence-like process also termed a step growth process. In order to extend this knowledge, the present work first optimized the protocol, leading to highly reproducible self-assembly experiments. Based on this optimization, the work succeeded in identifying an initial stage, not yet accessible, during which rigid short fibrils grow in close analogy to the thrombin-catalyzed polymerization of fibrin. In addition, first suggestions could be made on the transformation of these fibrils into larger aggregates, which upon drying turn into thick fiber-like ropes
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03132