A-D-A Molecule-Bridge Interface for Efficient Perovskite Solar Cells and Modules

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 26 vom: 17. Juni, Seite e2314098
1. Verfasser: Duan, Lianjie (VerfasserIn)
Weitere Verfasser: Zheng, Dexu, Farhadi, Bita, Wu, Sajian, Wang, Hao, Peng, Lei, Liu, Lu, Du, Minyong, Zhang, Youdi, Wang, Kai, Liu, Shengzhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article A‐D‐A structure fullerene interface bridging strategy module perovskite
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
As the photovoltaic field endeavors to transition perovskite solar cells (PSCs) to industrial applications, inverted PSCs, which incorporate fullerene as electron transport layers, have emerged as a compelling choice due to their augmented stability and cost-effectiveness. However, these attributes suffer from performance issues stemming from suboptimal electrical characteristics at the perovskite/fullerene interface. To surmount these hurdles, an interface bridging strategy (IBS) is proposed to attenuate the interface energy loss and enhance the interfacial stability by designing a series of A-D-A type perylene monoimide (PMI) derivatives with multifaceted advantages. In addition to passivating defects, the IBS plays a crucial role in facilitating the binding between perovskite and fullerene, thereby enhancing interface coupling and importantly, improving the formation of fullerene films. The PMI derivatives, functioning as bridges, serve as a protective barrier to enhance the device stability. Consequently, the IBS enables a remarkable efficiency of 24.62% for lab-scale PSCs and an efficiency of 18.73% for perovskite solar modules craft on 156 × 156 mm2 substrates. The obtained efficiencies represent some of the highest recorded for fullerene-based devices, showcasing significant progress in designing interfacial molecules at the perovskite/fullerene interface and offering a promising path to enhance the commercial viability of PSCs
Beschreibung:Date Revised 26.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202314098