Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 207(2024) vom: 26. Feb., Seite 108412
1. Verfasser: Alsubaie, Qasi D (VerfasserIn)
Weitere Verfasser: Al-Amri, Abdullah A, Siddiqui, Manzer H, Alamri, Saud
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Antioxidant system Arsenic toxicity Chlorophyll biosynthesis Environmental pollution Plant growth Proline biosynthesis Antioxidants Nitric Oxide 31C4KY9ESH mehr... Arsenic N712M78A8G GR24 strigolactone Reactive Oxygen Species Hydrogen Peroxide BBX060AN9V Heterocyclic Compounds, 3-Ring Lactones
LEADER 01000caa a22002652 4500
001 NLM368496473
003 DE-627
005 20240318234321.0
007 cr uuu---uuuuu
008 240216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2024.108412  |2 doi 
028 5 2 |a pubmed24n1334.xml 
035 |a (DE-627)NLM368496473 
035 |a (NLM)38359557 
035 |a (PII)S0981-9428(24)00080-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alsubaie, Qasi D  |e verfasserin  |4 aut 
245 1 0 |a Strigolactone and nitric oxide collaborate synergistically to boost tomato seedling resilience to arsenic toxicity via modulating physiology and antioxidant system 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2024 
500 |a Date Revised 18.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2024 Elsevier Masson SAS. All rights reserved. 
520 |a Arsenic (As) poses a significant environmental threat as a metalloid toxin, adversely affecting the health of both plants and animals. Strigolactones (SL) and nitric oxide (NO) are known to play crucial roles in plant physiology. Therefore, the present experiment was designed to investigate the potential cumulative role of SL (GR24-0.20 μM) and NO (100 μM) in mitigating the adverse effect of AsV (53 μM) by modulating physiological mechanisms in two genotypes of tomato (Riogrand and Super Strain 8). A sample randomized design with four replicates was used to arrange the experimental pots in the growth chamber. 45-d old both tomato cultivars under AsV toxicity exhibited reduced morphological attributes (root and shoot length, root and shoot fresh weight, and root and shoot dry weight) and physiological and biochemical characteristics [chlorophyll (Chl) a and b content, activity of δ-aminolevulinic acid dehydratase activity (an enzyme responsible for Chl biosynthesis), and carbonic anhydrase activity (an enzyme responsible for photosynthesis), and enhanced Chl degradation, overproduction of reactive oxygen species (ROS) and lipid peroxidation due to enhanced malondialdehyde (MDA) content. However, the combined application of SL and NO was more effective in enhancing the tolerance of both varieties to AsV toxicity compared to individual application. The combined application of SL and NO improved growth parameters, biosynthesis of Chls, NO and proline. However, the combined application significantly suppressed cellular damage by inhibiting MDA and overproduction of ROS in leaves and roots, as confirmed by the fluorescent microscopy study and markedly upregulated the antioxidant enzymes (catalase, peroxidase, superoxide dismutase, ascorbate dismutase and glutathione reductase) activity. This study provides clear evidence that the combined application of SL and NO supplementation significantly improves the resilience of tomato seedlings against AsV toxicity. The synergistic effect of SL and NO was confirmed by the application of cPTIO (an NO scavenger) with SL and NO. However, further molecular studies could be imperative to conclusively validate the simultaneous role of SL and NO in enhancing plant tolerance to abiotic stress 
650 4 |a Journal Article 
650 4 |a Antioxidant system 
650 4 |a Arsenic toxicity 
650 4 |a Chlorophyll biosynthesis 
650 4 |a Environmental pollution 
650 4 |a Plant growth 
650 4 |a Proline biosynthesis 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Nitric Oxide  |2 NLM 
650 7 |a 31C4KY9ESH  |2 NLM 
650 7 |a Arsenic  |2 NLM 
650 7 |a N712M78A8G  |2 NLM 
650 7 |a GR24 strigolactone  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Heterocyclic Compounds, 3-Ring  |2 NLM 
650 7 |a Lactones  |2 NLM 
700 1 |a Al-Amri, Abdullah A  |e verfasserin  |4 aut 
700 1 |a Siddiqui, Manzer H  |e verfasserin  |4 aut 
700 1 |a Alamri, Saud  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 207(2024) vom: 26. Feb., Seite 108412  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:207  |g year:2024  |g day:26  |g month:02  |g pages:108412 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2024.108412  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 207  |j 2024  |b 26  |c 02  |h 108412