Pseudo Label Association and Prototype-Based Invariant Learning for Semi-Supervised NIR-VIS Face Recognition
Remarkable success of the existing Near-InfraRed and VISible (NIR-VIS) approaches owes to sufficient labeled training data. However, collecting and tagging data from different domains is a time-consuming and expensive task. In this paper, we tackle the NIR-VIS face recognition problem in a semi-supe...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 1448-1463 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |