Pseudo Label Association and Prototype-Based Invariant Learning for Semi-Supervised NIR-VIS Face Recognition

Remarkable success of the existing Near-InfraRed and VISible (NIR-VIS) approaches owes to sufficient labeled training data. However, collecting and tagging data from different domains is a time-consuming and expensive task. In this paper, we tackle the NIR-VIS face recognition problem in a semi-supe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 22., Seite 1448-1463
1. Verfasser: Hu, Weipeng (VerfasserIn)
Weitere Verfasser: Yang, Yiming, Hu, Haifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article