Towards Generalized Few-Shot Open-Set Object Detection

Open-set object detection (OSOD) aims to detect the known categories and reject unknown objects in a dynamic world, which has achieved significant attention. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we s...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2024) vom: 15. Feb.
Auteur principal: Su, Binyi (Auteur)
Autres auteurs: Zhang, Hua, Li, Jingzhi, Zhou, Zhong
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM368489752
003 DE-627
005 20250305194253.0
007 cr uuu---uuuuu
008 240216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3364495  |2 doi 
028 5 2 |a pubmed25n1227.xml 
035 |a (DE-627)NLM368489752 
035 |a (NLM)38358871 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Binyi  |e verfasserin  |4 aut 
245 1 0 |a Towards Generalized Few-Shot Open-Set Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Open-set object detection (OSOD) aims to detect the known categories and reject unknown objects in a dynamic world, which has achieved significant attention. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the generalized few-shot open-set object detection (G-FOOD), which aims to avoid detecting unknown classes as known classes with a high confidence score while maintaining the performance of few-shot detection. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new G-FOOD algorithm to tackle this issue, named Few-shOt Open-set Detector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any threshold, prototype, or generation. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the F-score of unknown classes by 4.80%-9.08% across all shots in VOC-COCO dataset settings 
650 4 |a Journal Article 
700 1 |a Zhang, Hua  |e verfasserin  |4 aut 
700 1 |a Li, Jingzhi  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2024) vom: 15. Feb.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:15  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3364495  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 15  |c 02