Robust Visual Question Answering : Datasets, Methods, and Future Challenges

Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often tend to memorize biases present in the training data rather than learning proper behavio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 14. Juli, Seite 5575-5594
1. Verfasser: Ma, Jie (VerfasserIn)
Weitere Verfasser: Wang, Pinghui, Kong, Dechen, Wang, Zewei, Liu, Jun, Pei, Hongbin, Zhao, Junzhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368489728
003 DE-627
005 20240703234454.0
007 cr uuu---uuuuu
008 240216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3366154  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM368489728 
035 |a (NLM)38358867 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Jie  |e verfasserin  |4 aut 
245 1 0 |a Robust Visual Question Answering  |b Datasets, Methods, and Future Challenges 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often tend to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers. Therefore, these methods usually achieve high in-distribution but poor out-of-distribution performance. In recent years, various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively. This paper provides the first comprehensive survey focused on this emerging fashion. Specifically, we first provide an overview of the development process of datasets from in-distribution and out-of-distribution perspectives. Then, we examine the evaluation metrics employed by these datasets. Third, we propose a typology that presents the development process, similarities and differences, robustness comparison, and technical features of existing debiasing methods. Furthermore, we analyze and discuss the robustness of representative vision-and-language pre-training models on VQA. Finally, through a thorough review of the available literature and experimental analysis, we discuss the key areas for future research from various viewpoints 
650 4 |a Journal Article 
700 1 |a Wang, Pinghui  |e verfasserin  |4 aut 
700 1 |a Kong, Dechen  |e verfasserin  |4 aut 
700 1 |a Wang, Zewei  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
700 1 |a Pei, Hongbin  |e verfasserin  |4 aut 
700 1 |a Zhao, Junzhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 14. Juli, Seite 5575-5594  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:14  |g month:07  |g pages:5575-5594 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3366154  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 14  |c 07  |h 5575-5594