CrossHomo : Cross-Modality and Cross-Resolution Homography Estimation

Multi-modal homography estimation aims to spatially align the images from different modalities, which is quite challenging since both the image content and resolution are variant across modalities. In this paper, we introduce a novel framework namely CrossHomo to tackle this challenging problem. Our...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 15. Aug., Seite 5725-5742
Auteur principal: Deng, Xin (Auteur)
Autres auteurs: Liu, Enpeng, Gao, Chao, Li, Shengxi, Gu, Shuhang, Xu, Mai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM368489701
003 DE-627
005 20250305194252.0
007 cr uuu---uuuuu
008 240216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3366234  |2 doi 
028 5 2 |a pubmed25n1227.xml 
035 |a (DE-627)NLM368489701 
035 |a (NLM)38358870 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deng, Xin  |e verfasserin  |4 aut 
245 1 0 |a CrossHomo  |b Cross-Modality and Cross-Resolution Homography Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-modal homography estimation aims to spatially align the images from different modalities, which is quite challenging since both the image content and resolution are variant across modalities. In this paper, we introduce a novel framework namely CrossHomo to tackle this challenging problem. Our framework is motivated by two interesting findings which demonstrate the mutual benefits between image super-resolution and homography estimation. Based on these findings, we design a flexible multi-level homography estimation network to align the multi-modal images in a coarse-to-fine manner. Each level is composed of a multi-modal image super-resolution (MISR) module to shrink the resolution gap between different modalities, followed by a multi-modal homography estimation (MHE) module to predict the homography matrix. To the best of our knowledge, CrossHomo is the first attempt to address the homography estimation problem with both modality and resolution discrepancy. Extensive experimental results show that our CrossHomo can achieve high registration accuracy on various multi-modal datasets with different resolution gaps. In addition, the network has high efficiency in terms of both model complexity and running speed 
650 4 |a Journal Article 
700 1 |a Liu, Enpeng  |e verfasserin  |4 aut 
700 1 |a Gao, Chao  |e verfasserin  |4 aut 
700 1 |a Li, Shengxi  |e verfasserin  |4 aut 
700 1 |a Gu, Shuhang  |e verfasserin  |4 aut 
700 1 |a Xu, Mai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 15. Aug., Seite 5725-5742  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:15  |g month:08  |g pages:5725-5742 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3366234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 15  |c 08  |h 5725-5742