Disorder-Invariant Implicit Neural Representation

Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates which emerges as a sharp weapon for solving inverse problems. However, the expressive power of INR is limited by the spectral bias in the network training. In this paper, we find...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 14. Juli, Seite 5463-5478
1. Verfasser: Zhu, Hao (VerfasserIn)
Weitere Verfasser: Xie, Shaowen, Liu, Zhen, Liu, Fengyi, Zhang, Qi, Zhou, You, Lin, Yi, Ma, Zhan, Cao, Xun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368489655
003 DE-627
005 20240703234454.0
007 cr uuu---uuuuu
008 240216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3366237  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM368489655 
035 |a (NLM)38358866 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Hao  |e verfasserin  |4 aut 
245 1 0 |a Disorder-Invariant Implicit Neural Representation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates which emerges as a sharp weapon for solving inverse problems. However, the expressive power of INR is limited by the spectral bias in the network training. In this paper, we find that such a frequency-related problem could be greatly solved by re-arranging the coordinates of the input signal, for which we propose the disorder-invariant implicit neural representation (DINER) by augmenting a hash-table to a traditional INR backbone. Given discrete signals sharing the same histogram of attributes and different arrangement orders, the hash-table could project the coordinates into the same distribution for which the mapped signal can be better modeled using the subsequent INR network, leading to significantly alleviated spectral bias. Furthermore, the expressive power of the DINER is determined by the width of the hash-table. Different width corresponds to different geometrical elements in the attribute space, e.g., 1D curve, 2D curved-plane and 3D curved-volume when the width is set as 1, 2 and 3, respectively. More covered areas of the geometrical elements result in stronger expressive power. Experiments not only reveal the generalization of the DINER for different INR backbones (MLP versus SIREN) and various tasks (image/video representation, phase retrieval, refractive index recovery, and neural radiance field optimization) but also show the superiority over the state-of-the-art algorithms both in quality and speed 
650 4 |a Journal Article 
700 1 |a Xie, Shaowen  |e verfasserin  |4 aut 
700 1 |a Liu, Zhen  |e verfasserin  |4 aut 
700 1 |a Liu, Fengyi  |e verfasserin  |4 aut 
700 1 |a Zhang, Qi  |e verfasserin  |4 aut 
700 1 |a Zhou, You  |e verfasserin  |4 aut 
700 1 |a Lin, Yi  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
700 1 |a Cao, Xun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 14. Juli, Seite 5463-5478  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:14  |g month:07  |g pages:5463-5478 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3366237  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 14  |c 07  |h 5463-5478