Boosting algorithms for projecting streamflow in the Lower Godavari Basin for different climate change scenarios

The present study investigates the ability of five boosting algorithms, namely Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Light Gradient Boosting (LGBoost), Natural Gradient Boosting (NGBoost), and eXtreme Gradient Boosting (XGBoost) for simulating streamflow in the Lower Godavar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 3 vom: 01. Feb., Seite 613-634
1. Verfasser: Mishra, Bhavesh Rahul (VerfasserIn)
Weitere Verfasser: Vogeti, Rishith Kumar, Jauhari, Rahul, Raju, K Srinivasa, Kumar, D Nagesh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368485927
003 DE-627
005 20240216232904.0
007 cr uuu---uuuuu
008 240215s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.011  |2 doi 
028 5 2 |a pubmed24n1296.xml 
035 |a (DE-627)NLM368485927 
035 |a (NLM)38358493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mishra, Bhavesh Rahul  |e verfasserin  |4 aut 
245 1 0 |a Boosting algorithms for projecting streamflow in the Lower Godavari Basin for different climate change scenarios 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.02.2024 
500 |a Date Revised 16.02.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The present study investigates the ability of five boosting algorithms, namely Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Light Gradient Boosting (LGBoost), Natural Gradient Boosting (NGBoost), and eXtreme Gradient Boosting (XGBoost) for simulating streamflow in the Lower Godavari Basin, India. Monthly rainfall, temperatures, and streamflow from 1982 to 2020 were used for training and testing. Kling Gupta Efficiency (KGE) was deployed to assess the ability of the boosting algorithms. It was observed that all the boosting algorithms had shown good simulating ability, having KGE values of AdaBoost (0.87, 0.85), CatBoost (0.90, 0.78), LGBoost (0.95, 0.93), NGBoost (0.95, 0.95), and XGBoost (0.91, 0.90), respectively, in training and testing. Thus, all the algorithms were used for projecting streamflow in a climate change perspective for the short-term projections (2025-2050) and long-term projections (2051-2075) for four Shared Socioeconomic Pathways (SSPs). The highest streamflow for all four SSPs in the case of NGBoost is more than the historical scenario (9382 m3/s), whereas vice-versa for the remaining four. The effect of ensembling the outputs of five algorithms is also studied and compared with that of individual algorithms 
650 4 |a Journal Article 
700 1 |a Vogeti, Rishith Kumar  |e verfasserin  |4 aut 
700 1 |a Jauhari, Rahul  |e verfasserin  |4 aut 
700 1 |a Raju, K Srinivasa  |e verfasserin  |4 aut 
700 1 |a Kumar, D Nagesh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 89(2024), 3 vom: 01. Feb., Seite 613-634  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:89  |g year:2024  |g number:3  |g day:01  |g month:02  |g pages:613-634 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 89  |j 2024  |e 3  |b 01  |c 02  |h 613-634