Dual Branch Multi-Level Semantic Learning for Few-Shot Segmentation

Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples in support images. Although progress has been made recently by combining prototype-based metric learning, existing methods still face two main challenges. First, various intra-class...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 14., Seite 1432-1447
1. Verfasser: Chen, Yadang (VerfasserIn)
Weitere Verfasser: Jiang, Ren, Zheng, Yuhui, Sheng, Bin, Yang, Zhi-Xin, Wu, Enhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36844192X
003 DE-627
005 20240222232625.0
007 cr uuu---uuuuu
008 240215s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3364056  |2 doi 
028 5 2 |a pubmed24n1302.xml 
035 |a (DE-627)NLM36844192X 
035 |a (NLM)38354079 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yadang  |e verfasserin  |4 aut 
245 1 0 |a Dual Branch Multi-Level Semantic Learning for Few-Shot Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples in support images. Although progress has been made recently by combining prototype-based metric learning, existing methods still face two main challenges. First, various intra-class objects between the support and query images or semantically similar inter-class objects can seriously harm the segmentation performance due to their poor feature representations. Second, the latent novel classes are treated as the background in most methods, leading to a learning bias, whereby these novel classes are difficult to correctly segment as foreground. To solve these problems, we propose a dual-branch learning method. The class-specific branch encourages representations of objects to be more distinguishable by increasing the inter-class distance while decreasing the intra-class distance. In parallel, the class-agnostic branch focuses on minimizing the foreground class feature distribution and maximizing the features between the foreground and background, thus increasing the generalizability to novel classes in the test stage. Furthermore, to obtain more representative features, pixel-level and prototype-level semantic learning are both involved in the two branches. The method is evaluated on PASCAL- 5i 1 -shot, PASCAL- 5i 5 -shot, COCO- 20i 1 -shot, and COCO- 20i 5 -shot, and extensive experiments show that our approach is effective for few-shot semantic segmentation despite its simplicity 
650 4 |a Journal Article 
700 1 |a Jiang, Ren  |e verfasserin  |4 aut 
700 1 |a Zheng, Yuhui  |e verfasserin  |4 aut 
700 1 |a Sheng, Bin  |e verfasserin  |4 aut 
700 1 |a Yang, Zhi-Xin  |e verfasserin  |4 aut 
700 1 |a Wu, Enhua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 14., Seite 1432-1447  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:14  |g pages:1432-1447 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3364056  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 14  |h 1432-1447