Disentangled Cross-Modal Transformer for RGB-D Salient Object Detection and Beyond

Previous multi-modal transformers for RGB-D salient object detection (SOD) generally directly connect all patches from two modalities to model cross-modal correlation and perform multi-modal combination without differentiation, which can lead to confusing and inefficient fusion. Instead, we disentan...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 14., Seite 1699-1709
Auteur principal: Chen, Hao (Auteur)
Autres auteurs: Shen, Feihong, Ding, Ding, Deng, Yongjian, Li, Chao
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM368441865
003 DE-627
005 20250305193607.0
007 cr uuu---uuuuu
008 240215s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3364022  |2 doi 
028 5 2 |a pubmed25n1227.xml 
035 |a (DE-627)NLM368441865 
035 |a (NLM)38354080 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hao  |e verfasserin  |4 aut 
245 1 0 |a Disentangled Cross-Modal Transformer for RGB-D Salient Object Detection and Beyond 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Previous multi-modal transformers for RGB-D salient object detection (SOD) generally directly connect all patches from two modalities to model cross-modal correlation and perform multi-modal combination without differentiation, which can lead to confusing and inefficient fusion. Instead, we disentangle the cross-modal complementarity from two views to reduce cross-modal fusion ambiguity: 1) Context disentanglement. We argue that modeling long-range dependencies across modalities as done before is uninformative due to the severe modality gap. Differently, we propose to disentangle the cross-modal complementary contexts to intra-modal self-attention to explore global complementary understanding, and spatial-aligned inter-modal attention to capture local cross-modal correlations, respectively. 2) Representation disentanglement. Unlike previous undifferentiated combination of cross-modal representations, we find that cross-modal cues complement each other by enhancing common discriminative regions and mutually supplement modal-specific highlights. On top of this, we divide the tokens into consistent and private ones in the channel dimension to disentangle the multi-modal integration path and explicitly boost two complementary ways. By progressively propagate this strategy across layers, the proposed Disentangled Feature Pyramid module (DFP) enables informative cross-modal cross-level integration and better fusion adaptivity. Comprehensive experiments on a large variety of public datasets verify the efficacy of our context and representation disentanglement and the consistent improvement over state-of-the-art models. Additionally, our cross-modal attention hierarchy can be plug-and-play for different backbone architectures (both transformer and CNN) and downstream tasks, and experiments on a CNN-based model and RGB-D semantic segmentation verify this generalization ability 
650 4 |a Journal Article 
700 1 |a Shen, Feihong  |e verfasserin  |4 aut 
700 1 |a Ding, Ding  |e verfasserin  |4 aut 
700 1 |a Deng, Yongjian  |e verfasserin  |4 aut 
700 1 |a Li, Chao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 14., Seite 1699-1709  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:14  |g pages:1699-1709 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3364022  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 14  |h 1699-1709