Make-Your-Video : Customized Video Generation Using Textual and Structural Guidance

Creating a vivid video from the event or scenario in our imagination is a truly fascinating experience. Recent advancements in text-to-video synthesis have unveiled the potential to achieve this with prompts only. While text is convenient in conveying the overall scene context, it may be insufficien...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 2 vom: 03. Feb., Seite 1526-1541
Auteur principal: Xing, Jinbo (Auteur)
Autres auteurs: Xia, Menghan, Liu, Yuxin, Zhang, Yuechen, Zhang, Yong, He, Yingqing, Liu, Hanyuan, Chen, Haoxin, Cun, Xiaodong, Wang, Xintao, Shan, Ying, Wong, Tien-Tsin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM368441857
003 DE-627
005 20250508052112.0
007 cr uuu---uuuuu
008 240215s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3365804  |2 doi 
028 5 2 |a pubmed25n1332.xml 
035 |a (DE-627)NLM368441857 
035 |a (NLM)38354074 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xing, Jinbo  |e verfasserin  |4 aut 
245 1 0 |a Make-Your-Video  |b Customized Video Generation Using Textual and Structural Guidance 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Creating a vivid video from the event or scenario in our imagination is a truly fascinating experience. Recent advancements in text-to-video synthesis have unveiled the potential to achieve this with prompts only. While text is convenient in conveying the overall scene context, it may be insufficient to control precisely. In this paper, we explore customized video generation by utilizing text as context description and motion structure (e.g., frame-wise depth) as concrete guidance. Our method, dubbed Make-Your-Video, involves joint-conditional video generation using a Latent Diffusion Model that is pre-trained for still image synthesis and then promoted for video generation with the introduction of temporal modules. This two-stage learning scheme not only reduces the computing resources required, but also improves the performance by transferring the rich concepts available in image datasets solely into video generation. Moreover, we use a simple yet effective causal attention mask strategy to enable longer video synthesis, which mitigates the potential quality degradation effectively. Experimental results show the superiority of our method over existing baselines, particularly in terms of temporal coherence and fidelity to users' guidance. In addition, our model enables several intriguing applications that demonstrate potential for practical usage 
650 4 |a Journal Article 
700 1 |a Xia, Menghan  |e verfasserin  |4 aut 
700 1 |a Liu, Yuxin  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuechen  |e verfasserin  |4 aut 
700 1 |a Zhang, Yong  |e verfasserin  |4 aut 
700 1 |a He, Yingqing  |e verfasserin  |4 aut 
700 1 |a Liu, Hanyuan  |e verfasserin  |4 aut 
700 1 |a Chen, Haoxin  |e verfasserin  |4 aut 
700 1 |a Cun, Xiaodong  |e verfasserin  |4 aut 
700 1 |a Wang, Xintao  |e verfasserin  |4 aut 
700 1 |a Shan, Ying  |e verfasserin  |4 aut 
700 1 |a Wong, Tien-Tsin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 31(2025), 2 vom: 03. Feb., Seite 1526-1541  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:2  |g day:03  |g month:02  |g pages:1526-1541 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3365804  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 2  |b 03  |c 02  |h 1526-1541