SMART : Syntax-Calibrated Multi-Aspect Relation Transformer for Change Captioning

Change captioning aims to describe the semantic change between two similar images. In this process, as the most typical distractor, viewpoint change leads to the pseudo changes about appearance and position of objects, thereby overwhelming the real change. Besides, since the visual signal of change...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 01. Juni, Seite 4926-4943
1. Verfasser: Tu, Yunbin (VerfasserIn)
Weitere Verfasser: Li, Liang, Su, Li, Zha, Zheng-Jun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368399540
003 DE-627
005 20240606232355.0
007 cr uuu---uuuuu
008 240214s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3365104  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM368399540 
035 |a (NLM)38349824 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tu, Yunbin  |e verfasserin  |4 aut 
245 1 0 |a SMART  |b Syntax-Calibrated Multi-Aspect Relation Transformer for Change Captioning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Change captioning aims to describe the semantic change between two similar images. In this process, as the most typical distractor, viewpoint change leads to the pseudo changes about appearance and position of objects, thereby overwhelming the real change. Besides, since the visual signal of change appears in a local region with weak feature, it is difficult for the model to directly translate the learned change features into the sentence. In this paper, we propose a syntax-calibrated multi-aspect relation transformer to learn effective change features under different scenes, and build reliable cross-modal alignment between the change features and linguistic words during caption generation. Specifically, a multi-aspect relation learning network is designed to 1) explore the fine-grained changes under irrelevant distractors (e.g., viewpoint change) by embedding the relations of semantics and relative position into the features of each image; 2) learn two view-invariant image representations by strengthening their global contrastive alignment relation, so as to help capture a stable difference representation; 3) provide the model with the prior knowledge about whether and where the semantic change happened by measuring the relation between the representations of captured difference and the image pair. Through the above manner, the model can learn effective change features for caption generation. Further, we introduce the syntax knowledge of Part-of-Speech (POS) and devise a POS-based visual switch to calibrate the transformer decoder. The POS-based visual switch dynamically utilizes visual information during different word generation based on the POS of words. This enables the decoder to build reliable cross-modal alignment, so as to generate a high-level linguistic sentence about change. Extensive experiments show that the proposed method achieves the state-of-the-art performance on the three public datasets 
650 4 |a Journal Article 
700 1 |a Li, Liang  |e verfasserin  |4 aut 
700 1 |a Su, Li  |e verfasserin  |4 aut 
700 1 |a Zha, Zheng-Jun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 01. Juni, Seite 4926-4943  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:01  |g month:06  |g pages:4926-4943 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3365104  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 01  |c 06  |h 4926-4943