Electrolytes Design for Extending the Temperature Adaptability of Lithium-Ion Batteries : from Fundamentals to Strategies

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 21 vom: 20. Mai, Seite e2311912
Auteur principal: Wan, Shuang (Auteur)
Autres auteurs: Ma, Weiting, Wang, Yutong, Xiao, Ying, Chen, Shimou
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article Review electrolyte interface lithium‐ion batteries temperature adaptability
LEADER 01000caa a22002652c 4500
001 NLM368389251
003 DE-627
005 20250305192840.0
007 cr uuu---uuuuu
008 240213s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202311912  |2 doi 
028 5 2 |a pubmed25n1227.xml 
035 |a (DE-627)NLM368389251 
035 |a (NLM)38348797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Shuang  |e verfasserin  |4 aut 
245 1 0 |a Electrolytes Design for Extending the Temperature Adaptability of Lithium-Ion Batteries  |b from Fundamentals to Strategies 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a With the continuously growing demand for wide-range applications, lithium-ion batteries (LIBs) are increasingly required to work under conditions that deviate from room temperature (RT). However, commercial electrolytes exhibit low thermal stability at high temperatures (HT) and poor dynamic properties at low temperatures (LT), hindering the operation of LIBs under extreme conditions. The bottleneck restricting the practical applications of LIBs has promoted researchers to pay more attention to developing a series of innovative electrolytes. This review primarily covers the design of electrolytes for LIBs from a temperature adaptability perspective. First, the fundamentals of electrolytes concerning temperature, including donor number (DN), dielectric constant, viscosity, conductivity, ionic transport, and theoretical calculations are elaborated. Second, prototypical examples, such as lithium salts, solvent structures, additives, and interfacial layers in both liquid and solid electrolytes, are presented to explain how these factors can affect the electrochemical behavior of LIBs at high or low temperatures. Meanwhile, the principles and limitations of electrolyte design are discussed under the corresponding temperature conditions. Finally, a summary and outlook regarding electrolytes design to extend the temperature adaptability of LIBs are proposed 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a electrolyte 
650 4 |a interface 
650 4 |a lithium‐ion batteries 
650 4 |a temperature adaptability 
700 1 |a Ma, Weiting  |e verfasserin  |4 aut 
700 1 |a Wang, Yutong  |e verfasserin  |4 aut 
700 1 |a Xiao, Ying  |e verfasserin  |4 aut 
700 1 |a Chen, Shimou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 21 vom: 20. Mai, Seite e2311912  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:21  |g day:20  |g month:05  |g pages:e2311912 
856 4 0 |u http://dx.doi.org/10.1002/adma.202311912  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 21  |b 20  |c 05  |h e2311912