|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM368363643 |
003 |
DE-627 |
005 |
20240720232655.0 |
007 |
cr uuu---uuuuu |
008 |
240213s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202314242
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1476.xml
|
035 |
|
|
|a (DE-627)NLM368363643
|
035 |
|
|
|a (NLM)38346232
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, David D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Sub-Diffraction Correlation of Quantum Emitters and Local Strain Fields in Strain-Engineered WSe2 Monolayers
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Strain-engineering in atomically thin metal dichalcogenides is a useful method for realizing single-photon emitters (SPEs) for quantum technologies. Correlating SPE position with local strain topography is challenging due to localization inaccuracies from the diffraction limit. Currently, SPEs are assumed to be positioned at the highest strained location and are typically identified by randomly screening narrow-linewidth emitters, of which only a few are spectrally pure. In this work, hyperspectral quantum emitter localization microscopy is used to locate 33 SPEs in nanoparticle-strained WSe2 monolayers with sub-diffraction-limit resolution (≈30 nm) and correlate their positions with the underlying strain field via image registration. In this system, spectrally pure emitters are not concentrated at the highest strain location due to spectral contamination; instead, isolable SPEs are distributed away from points of peak strain with an average displacement of 240 nm. These observations point toward a need for a change in the design rules for strain-engineered SPEs and constitute a key step toward realizing next-generation quantum optical architectures
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D material
|
650 |
|
4 |
|a quantum emitter
|
650 |
|
4 |
|a quantum information science
|
650 |
|
4 |
|a single photon emitter
|
650 |
|
4 |
|a strain engineering
|
650 |
|
4 |
|a transition metal dichalcogenides
|
700 |
1 |
|
|a Vong, Albert F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Utama, M Iqbal Bakti
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lebedev, Dmitry
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ananth, Riddhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hersam, Mark C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weiss, Emily A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mirkin, Chad A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 25 vom: 01. Juni, Seite e2314242
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:25
|g day:01
|g month:06
|g pages:e2314242
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202314242
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 25
|b 01
|c 06
|h e2314242
|