PyRETIS 3 : Conquering rare and slow events without boundaries

© 2024 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 15 vom: 05. Apr., Seite 1224-1234
1. Verfasser: Vervust, Wouter (VerfasserIn)
Weitere Verfasser: Zhang, Daniel T, Ghysels, An, Roet, Sander, van Erp, Titus S, Riccardi, Enrico
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article PyRETIS Python kinetics path sampling rare event slow event
LEADER 01000caa a22002652 4500
001 NLM368352307
003 DE-627
005 20240419232312.0
007 cr uuu---uuuuu
008 240213s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27319  |2 doi 
028 5 2 |a pubmed24n1380.xml 
035 |a (DE-627)NLM368352307 
035 |a (NLM)38345082 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vervust, Wouter  |e verfasserin  |4 aut 
245 1 0 |a PyRETIS 3  |b Conquering rare and slow events without boundaries 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley Periodicals LLC. 
520 |a We present and discuss the advancements made in PyRETIS 3, the third instalment of our Python library for an efficient and user-friendly rare event simulation, focused to execute molecular simulations with replica exchange transition interface sampling (RETIS) and its variations. Apart from a general rewiring of the internal code towards a more modular structure, several recently developed sampling strategies have been implemented. These include recently developed Monte Carlo moves to increase path decorrelation and convergence rate, and new ensemble definitions to handle the challenges of long-lived metastable states and transitions with unbounded reactant and product states. Additionally, the post-analysis software PyVisa is now embedded in the main code, allowing fast use of machine-learning algorithms for clustering and visualising collective variables in the simulation data 
650 4 |a Journal Article 
650 4 |a PyRETIS 
650 4 |a Python 
650 4 |a kinetics 
650 4 |a path sampling 
650 4 |a rare event 
650 4 |a slow event 
700 1 |a Zhang, Daniel T  |e verfasserin  |4 aut 
700 1 |a Ghysels, An  |e verfasserin  |4 aut 
700 1 |a Roet, Sander  |e verfasserin  |4 aut 
700 1 |a van Erp, Titus S  |e verfasserin  |4 aut 
700 1 |a Riccardi, Enrico  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 15 vom: 05. Apr., Seite 1224-1234  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:15  |g day:05  |g month:04  |g pages:1224-1234 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 15  |b 05  |c 04  |h 1224-1234