Anisotropic Magnetic Polymeric Particles with a Controllable Structure via Seeded Emulsion Polymerization

Magnetic polymer composites have been widely utilized in potential applications in material science, such as reduction of dyes, immunodiagnostics, biomedicals, and magnetically controllable photonic crystals owing to large surface areas, fast separation, and recyclable performance. In this work, ani...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - (2024) vom: 11. Feb.
1. Verfasser: Xu, Qianrui (VerfasserIn)
Weitere Verfasser: Nie, Yingrui, Wu, Diyan, Li, Jiatong, Zeng, Jiaxin, Wang, Zhi-Fei, Jiang, Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Magnetic polymer composites have been widely utilized in potential applications in material science, such as reduction of dyes, immunodiagnostics, biomedicals, and magnetically controllable photonic crystals owing to large surface areas, fast separation, and recyclable performance. In this work, anisotropic magnetic particles were prepared by seeded emulsion polymerization, with morphologies of "Fe3O4-shell", "hemisphere-like", "raspberry-like", "multiple lobes-like", and "sandwich-like". Poly(styrene/divinylbenzene/mono-2-(methacryloxy)ethyl succinate) Fe3O4 (P(St/DVB/MMES)@Fe3O4) were the seed microspheres, and P(St/DVB/MMES)@Fe3O4@polymer particles are achieved by seeded emulsion polymerizations. The morphology of the particles depends on polymerization conditions (monomer ratios and surfactant), particle properties, and so on. Then, the minimum surface free energy change principles were used to predict the equilibrium morphologies of the magnetic polymer composites. Through theory, the model gives the correct tendency and good agreement with the equilibrium morphology which was in tandem with TEM results. Lastly, after in situ surface deposition of Ag nanoparticles, magnetic composite particles with sandwich-like morphology were applied for the catalytic degradation of 4-nitrophenol (4-NP) reacting with NaBH4. The apparent rate coefficient is 0.0069 s-1, and it can keep mainly about 80% efficiency in catalysis after five cycles
Beschreibung:Date Revised 12.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03379