Bioresorbable Multilayer Organic-Inorganic Films for Bioelectronic Systems

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 19 vom: 02. Mai, Seite e2309421
1. Verfasser: Hu, Ziying (VerfasserIn)
Weitere Verfasser: Guo, Hexia, An, Dongqi, Wu, Mingzheng, Kaura, Anika, Oh, Hannah, Wang, Yue, Zhao, Mengjia, Li, Shuo, Yang, Quansan, Ji, Xudong, Li, Shupeng, Wang, Bo, Yoo, Davin, Tran, Phuong, Ghoreishi-Haack, Nayereh, Kozorovitskiy, Yevgenia, Huang, Yonggang, Li, Rui, Rogers, John A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biofluid barriers bioresorbable electronics electronics packaging organic–inorganic materials Water 059QF0KO0R Biocompatible Materials
Beschreibung
Zusammenfassung:© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure
Beschreibung:Date Completed 09.05.2024
Date Revised 09.05.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202309421