UCL-Dehaze : Toward Real-World Image Dehazing via Unsupervised Contrastive Learning

While the wisdom of training an image dehazing model on synthetic hazy data can alleviate the difficulty of collecting real-world hazy/clean image pairs, it brings the well-known domain shift problem. From a different yet new perspective, this paper explores contrastive learning with an adversarial...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 21., Seite 1361-1374
1. Verfasser: Wang, Yongzhen (VerfasserIn)
Weitere Verfasser: Yan, Xuefeng, Wang, Fu Lee, Xie, Haoran, Yang, Wenhan, Zhang, Xiao-Ping, Qin, Jing, Wei, Mingqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article