Learning With Constraint Learning : New Perspective, Solution Strategy and Various Applications

The complexity of learning problems, such as Generative Adversarial Network (GAN) and its variants, multi-task and meta-learning, hyper-parameter learning, and a variety of real-world vision applications, demands a deeper understanding of their underlying coupling mechanisms. Existing approaches oft...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 09. Juli, Seite 5026-5043
Auteur principal: Liu, Risheng (Auteur)
Autres auteurs: Gao, Jiaxin, Liu, Xuan, Fan, Xin
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM368245764
003 DE-627
005 20250305190858.0
007 cr uuu---uuuuu
008 240210s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3364157  |2 doi 
028 5 2 |a pubmed25n1226.xml 
035 |a (DE-627)NLM368245764 
035 |a (NLM)38335083 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Risheng  |e verfasserin  |4 aut 
245 1 0 |a Learning With Constraint Learning  |b New Perspective, Solution Strategy and Various Applications 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The complexity of learning problems, such as Generative Adversarial Network (GAN) and its variants, multi-task and meta-learning, hyper-parameter learning, and a variety of real-world vision applications, demands a deeper understanding of their underlying coupling mechanisms. Existing approaches often address these problems in isolation, lacking a unified perspective that can reveal commonalities and enable effective solutions. Therefore, in this work, we proposed a new framework, named Learning with Constraint Learning (LwCL), that can holistically examine challenges and provide a unified methodology to tackle all the above-mentioned complex learning and vision problems. Specifically, LwCL is designed as a general hierarchical optimization model that captures the essence of these diverse learning and vision problems. Furthermore, we develop a gradient-response based fast solution strategy to overcome optimization challenges of the LwCL framework. Our proposed framework efficiently addresses a wide range of applications in learning and vision, encompassing three categories and nine different problem types. Extensive experiments on synthetic tasks and real-world applications verify the effectiveness of our approach. The LwCL framework offers a comprehensive solution for tackling complex machine learning and computer vision problems, bridging the gap between theory and practice 
650 4 |a Journal Article 
700 1 |a Gao, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Liu, Xuan  |e verfasserin  |4 aut 
700 1 |a Fan, Xin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 09. Juli, Seite 5026-5043  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:09  |g month:07  |g pages:5026-5043 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3364157  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 09  |c 07  |h 5026-5043