Secondary Amines Functionalized Organocatalytic Iodine Redox for High-Performance Aqueous Dual-Ion Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 23 vom: 01. Juni, Seite e2314247
1. Verfasser: Yang, Rui (VerfasserIn)
Weitere Verfasser: Yao, Wenjiao, Zhou, Liyu, Zhang, Fan, Zheng, Yongping, Lee, Chun-Sing, Tang, Yongbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Zn metal anode aqueous battery dual ion battery organocatalysis redox‐active anion
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Aqueous dual-ion batteries (ADIBs) based on the cooperative redox of cations and iodine anions at the anode and cathode respectively, are attracting increasing interest because of high capacity and safety. However, the full-cell performance is limited by the sluggish iodine redox kinetics between iodide and polyiodide involving multiple electron transfer steps, and the undesirable shuttling effect of polyiodides. Here, this work reports a versatile conjugated microporous polymer functionalized with secondary amine groups as an organocatalytic cathode for ADIB, which can be positively charged and electrostatically adsorb iodide, and organocatalyze iodine redox reactions through the amine groups. Both theoretical calculations and controlled experiments confirm that the secondary amine groups confine (poly)iodide species via hydrogen bonding, which is essential for accelerating iodine redox kinetics and reducing the polyiodide shuttling effect. The ADIB achieves an ultrahigh capacity of 730 mAh g-1 with an ultrasmall overpotential of 47 mV at 1 A g-1, which also exhibits excellent rate performance and long cycling stability with a capacity retention of 74% after 5000 cycles at a high current density of 5 A g-1. This work demonstrates the promise of developing organocatalysts for accelerating electrochemical processes, which remains a virtually unexplored area in electrocatalyst design for clean energy applications
Beschreibung:Date Revised 07.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202314247