|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM368219410 |
003 |
DE-627 |
005 |
20250305190520.0 |
007 |
cr uuu---uuuuu |
008 |
240209s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202311341
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1226.xml
|
035 |
|
|
|a (DE-627)NLM368219410
|
035 |
|
|
|a (NLM)38332453
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Meese, Aidan Francis
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Underpotential Deposition of 3D Transition Metals
|b Versatile Electrosynthesis of Single-Atom Catalysts on Oxidized Carbon Supports
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.05.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Use of single-atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high-loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono- and bi-metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X-ray absorption spectroscopy and, finally, the catalytic performance of a UPD-synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electrochemical
|
650 |
|
4 |
|a nitrate reduction
|
650 |
|
4 |
|a single atom catalyst
|
650 |
|
4 |
|a synthesis
|
650 |
|
4 |
|a underpotential deposition
|
700 |
1 |
|
|a Napier, Cade
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, David J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rigby, Kali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hedtke, Tayler
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Leshchev, Denis
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stavitski, Eli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Parent, Lucas R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jae-Hong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 19 vom: 08. Mai, Seite e2311341
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:19
|g day:08
|g month:05
|g pages:e2311341
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202311341
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 19
|b 08
|c 05
|h e2311341
|