One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton Matching

One-shot skeleton action recognition, which aims to learn a skeleton action recognition model with a single training sample, has attracted increasing interest due to the challenge of collecting and annotating large-scale skeleton action data. However, most existing studies match skeleton sequences b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 01. Juni, Seite 5149-5156
1. Verfasser: Yang, Siyuan (VerfasserIn)
Weitere Verfasser: Liu, Jun, Lu, Shijian, Hwa, Er Meng, Kot, Alex C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368193489
003 DE-627
005 20240606232347.0
007 cr uuu---uuuuu
008 240209s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3363831  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM368193489 
035 |a (NLM)38329852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Siyuan  |e verfasserin  |4 aut 
245 1 0 |a One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton Matching 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One-shot skeleton action recognition, which aims to learn a skeleton action recognition model with a single training sample, has attracted increasing interest due to the challenge of collecting and annotating large-scale skeleton action data. However, most existing studies match skeleton sequences by comparing their feature vectors directly which neglects spatial structures and temporal orders of skeleton data. This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching. We represent skeleton data at multiple spatial and temporal scales and achieve optimal feature matching from two perspectives. The first is multi-scale matching which captures the scale-wise semantic relevance of skeleton data at multiple spatial and temporal scales simultaneously. The second is cross-scale matching which handles different motion magnitudes and speeds by capturing sample-wise relevance across multiple scales. Extensive experiments over three large-scale datasets (NTU RGB+D, NTU RGB+D 120, and PKU-MMD) show that our method achieves superior one-shot skeleton action recognition, and outperforms SOTA consistently by large margins 
650 4 |a Journal Article 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
700 1 |a Lu, Shijian  |e verfasserin  |4 aut 
700 1 |a Hwa, Er Meng  |e verfasserin  |4 aut 
700 1 |a Kot, Alex C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 01. Juni, Seite 5149-5156  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:01  |g month:06  |g pages:5149-5156 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3363831  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 01  |c 06  |h 5149-5156