|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM368193489 |
003 |
DE-627 |
005 |
20240606232347.0 |
007 |
cr uuu---uuuuu |
008 |
240209s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3363831
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1430.xml
|
035 |
|
|
|a (DE-627)NLM368193489
|
035 |
|
|
|a (NLM)38329852
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Siyuan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a One-Shot Action Recognition via Multi-Scale Spatial-Temporal Skeleton Matching
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 06.06.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a One-shot skeleton action recognition, which aims to learn a skeleton action recognition model with a single training sample, has attracted increasing interest due to the challenge of collecting and annotating large-scale skeleton action data. However, most existing studies match skeleton sequences by comparing their feature vectors directly which neglects spatial structures and temporal orders of skeleton data. This paper presents a novel one-shot skeleton action recognition technique that handles skeleton action recognition via multi-scale spatial-temporal feature matching. We represent skeleton data at multiple spatial and temporal scales and achieve optimal feature matching from two perspectives. The first is multi-scale matching which captures the scale-wise semantic relevance of skeleton data at multiple spatial and temporal scales simultaneously. The second is cross-scale matching which handles different motion magnitudes and speeds by capturing sample-wise relevance across multiple scales. Extensive experiments over three large-scale datasets (NTU RGB+D, NTU RGB+D 120, and PKU-MMD) show that our method achieves superior one-shot skeleton action recognition, and outperforms SOTA consistently by large margins
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Shijian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hwa, Er Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kot, Alex C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 7 vom: 01. Juni, Seite 5149-5156
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:7
|g day:01
|g month:06
|g pages:5149-5156
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3363831
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 7
|b 01
|c 06
|h 5149-5156
|