|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM368091937 |
003 |
DE-627 |
005 |
20240608002806.0 |
007 |
cr uuu---uuuuu |
008 |
240207s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3362821
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1432.xml
|
035 |
|
|
|a (DE-627)NLM368091937
|
035 |
|
|
|a (NLM)38319772
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Joshi, Indu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Synthetic Data in Human Analysis
|b A Survey
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.06.2024
|
500 |
|
|
|a Date Revised 06.06.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric recognition, action recognition, as well as person re-identification. However, the performance of such networks scales with the available training data. In human analysis, the demand for large-scale datasets poses a severe challenge, as data collection is tedious, time-expensive, costly and must comply with data protection laws. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to collecting real data in the field. This survey introduces the basic definitions and methodologies, essential when generating and employing synthetic data for human analysis. We summarise current state-of-the-art methods and the main benefits of using synthetic data. We also provide an overview of publicly available synthetic datasets and generation models. Finally, we discuss limitations, as well as open research problems in this field. This survey is intended for researchers and practitioners in the field of human analysis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
700 |
1 |
|
|a Grimmer, Marcel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rathgeb, Christian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Busch, Christoph
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bremond, Francois
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dantcheva, Antitza
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 7 vom: 06. Juni, Seite 4957-4976
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:7
|g day:06
|g month:06
|g pages:4957-4976
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3362821
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 7
|b 06
|c 06
|h 4957-4976
|