Synthetic Data in Human Analysis : A Survey

Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric recognition, action recognition, as well as person re-identification. However, the performance of such networks scales with the available training data. In human analysis, the de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 06. Juni, Seite 4957-4976
1. Verfasser: Joshi, Indu (VerfasserIn)
Weitere Verfasser: Grimmer, Marcel, Rathgeb, Christian, Busch, Christoph, Bremond, Francois, Dantcheva, Antitza
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Review
LEADER 01000caa a22002652 4500
001 NLM368091937
003 DE-627
005 20240608002806.0
007 cr uuu---uuuuu
008 240207s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3362821  |2 doi 
028 5 2 |a pubmed24n1432.xml 
035 |a (DE-627)NLM368091937 
035 |a (NLM)38319772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Joshi, Indu  |e verfasserin  |4 aut 
245 1 0 |a Synthetic Data in Human Analysis  |b A Survey 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.06.2024 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deep neural networks have become prevalent in human analysis, boosting the performance of applications, such as biometric recognition, action recognition, as well as person re-identification. However, the performance of such networks scales with the available training data. In human analysis, the demand for large-scale datasets poses a severe challenge, as data collection is tedious, time-expensive, costly and must comply with data protection laws. Current research investigates the generation of synthetic data as an efficient and privacy-ensuring alternative to collecting real data in the field. This survey introduces the basic definitions and methodologies, essential when generating and employing synthetic data for human analysis. We summarise current state-of-the-art methods and the main benefits of using synthetic data. We also provide an overview of publicly available synthetic datasets and generation models. Finally, we discuss limitations, as well as open research problems in this field. This survey is intended for researchers and practitioners in the field of human analysis 
650 4 |a Journal Article 
650 4 |a Review 
700 1 |a Grimmer, Marcel  |e verfasserin  |4 aut 
700 1 |a Rathgeb, Christian  |e verfasserin  |4 aut 
700 1 |a Busch, Christoph  |e verfasserin  |4 aut 
700 1 |a Bremond, Francois  |e verfasserin  |4 aut 
700 1 |a Dantcheva, Antitza  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 06. Juni, Seite 4957-4976  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:06  |g month:06  |g pages:4957-4976 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3362821  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 06  |c 06  |h 4957-4976