Box2Mask : Box-Supervised Instance Segmentation via Level-Set Evolution

In contrast to fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of simple box annotations, which has recently attracted increasing research attention. This paper presents a novel single-shot instance segmentation approach, namely Box2Mask, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 01. Juni, Seite 5157-5173
1. Verfasser: Li, Wentong (VerfasserIn)
Weitere Verfasser: Liu, Wenyu, Zhu, Jianke, Cui, Miaomiao, Yu, Risheng, Hua, Xiansheng, Zhang, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368091929
003 DE-627
005 20240606232345.0
007 cr uuu---uuuuu
008 240207s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3363054  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM368091929 
035 |a (NLM)38319771 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Wentong  |e verfasserin  |4 aut 
245 1 0 |a Box2Mask  |b Box-Supervised Instance Segmentation via Level-Set Evolution 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In contrast to fully supervised methods using pixel-wise mask labels, box-supervised instance segmentation takes advantage of simple box annotations, which has recently attracted increasing research attention. This paper presents a novel single-shot instance segmentation approach, namely Box2Mask, which integrates the classical level-set evolution model into deep neural network learning to achieve accurate mask prediction with only bounding box supervision. Specifically, both the input image and its deep features are employed to evolve the level-set curves implicitly, and a local consistency module based on a pixel affinity kernel is used to mine the local context and spatial relations. Two types of single-stage frameworks, i.e., CNN-based and transformer-based frameworks, are developed to empower the level-set evolution for box-supervised instance segmentation, and each framework consists of three essential components: instance-aware decoder, box-level matching assignment and level-set evolution. By minimizing the level-set energy function, the mask map of each instance can be iteratively optimized within its bounding box annotation. The experimental results on five challenging testbeds, covering general scenes, remote sensing, medical and scene text images, demonstrate the outstanding performance of our proposed Box2Mask approach for box-supervised instance segmentation. In particular, with the Swin-Transformer large backbone, our Box2Mask obtains 42.4% mask AP on COCO, which is on par with the recently developed fully mask-supervised methods 
650 4 |a Journal Article 
700 1 |a Liu, Wenyu  |e verfasserin  |4 aut 
700 1 |a Zhu, Jianke  |e verfasserin  |4 aut 
700 1 |a Cui, Miaomiao  |e verfasserin  |4 aut 
700 1 |a Yu, Risheng  |e verfasserin  |4 aut 
700 1 |a Hua, Xiansheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 01. Juni, Seite 5157-5173  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:01  |g month:06  |g pages:5157-5173 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3363054  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 01  |c 06  |h 5157-5173