AI-Enabled Materials Design of Non-Periodic 3D Architectures With Predictable Direction-Dependent Elastic Properties

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 34 vom: 06. Aug., Seite e2308149
Auteur principal: Deng, Weiting (Auteur)
Autres auteurs: Kumar, Siddhant, Vallone, Alberto, Kochmann, Dennis M, Greer, Julia R
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article additive manufacturing anisotropy biomimetic machine learning scaffold design
Description
Résumé:© 2024 Wiley‐VCH GmbH.
Natural porous materials have exceptional properties-for example, light weight, mechanical resilience, and multi-functionality. Efforts to imitate their properties in engineered structures have limited success. This, in part, is caused by the complexity of multi-phase materials composites and by the lack of quantified understanding of each component's role in overall hierarchy. This challenge is twofold: 1) computational. because non-periodicity and defects render constructing design guidelines between geometries and mechanical properties complex and expensive and 2) experimental. because the fabrication and characterization of complex, often hierarchical and non-periodic 3D architectures is non-trivial
Description:Date Revised 21.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202308149