Towards Open Vocabulary Learning : A Survey

In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 01. Juni, Seite 5092-5113
1. Verfasser: Wu, Jianzong (VerfasserIn)
Weitere Verfasser: Li, Xiangtai, Xu, Shilin, Yuan, Haobo, Ding, Henghui, Yang, Yibo, Li, Xia, Zhang, Jiangning, Tong, Yunhai, Jiang, Xudong, Ghanem, Bernard, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368048748
003 DE-627
005 20240606232342.0
007 cr uuu---uuuuu
008 240206s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3361862  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM368048748 
035 |a (NLM)38315601 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Jianzong  |e verfasserin  |4 aut 
245 1 0 |a Towards Open Vocabulary Learning  |b A Survey 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective than weakly supervised and zero-shot settings. This paper thoroughly reviews open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by juxtaposing open vocabulary learning with analogous concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Subsequently, we examine several pertinent tasks within the realms of segmentation and detection, encompassing long-tail problems, few-shot, and zero-shot settings. As a foundation for our method survey, we first elucidate the fundamental principles of detection and segmentation in close-set scenarios. Next, we examine various contexts where open vocabulary learning is employed, pinpointing recurring design elements and central themes. This is followed by a comparative analysis of recent detection and segmentation methodologies in commonly used datasets and benchmarks. Our review culminates with a synthesis of insights, challenges, and discourse on prospective research trajectories. To our knowledge, this constitutes the inaugural exhaustive literature review on open vocabulary learning 
650 4 |a Journal Article 
700 1 |a Li, Xiangtai  |e verfasserin  |4 aut 
700 1 |a Xu, Shilin  |e verfasserin  |4 aut 
700 1 |a Yuan, Haobo  |e verfasserin  |4 aut 
700 1 |a Ding, Henghui  |e verfasserin  |4 aut 
700 1 |a Yang, Yibo  |e verfasserin  |4 aut 
700 1 |a Li, Xia  |e verfasserin  |4 aut 
700 1 |a Zhang, Jiangning  |e verfasserin  |4 aut 
700 1 |a Tong, Yunhai  |e verfasserin  |4 aut 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
700 1 |a Ghanem, Bernard  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 01. Juni, Seite 5092-5113  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:01  |g month:06  |g pages:5092-5113 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3361862  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 01  |c 06  |h 5092-5113