Multi-Task Learning of Object States and State-Modifying Actions From Web Videos

We aim to learn to temporally localize object state changes and the corresponding state-modifying actions by observing people interacting with objects in long uncurated web videos. We introduce three principal contributions. First, we develop a self-supervised model for jointly learning state-modify...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 05. Juni, Seite 5114-5130
1. Verfasser: Soucek, Tomas (VerfasserIn)
Weitere Verfasser: Alayrac, Jean-Baptiste, Miech, Antoine, Laptev, Ivan, Sivic, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368048721
003 DE-627
005 20240606232342.0
007 cr uuu---uuuuu
008 240206s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3362288  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM368048721 
035 |a (NLM)38315606 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Soucek, Tomas  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Learning of Object States and State-Modifying Actions From Web Videos 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We aim to learn to temporally localize object state changes and the corresponding state-modifying actions by observing people interacting with objects in long uncurated web videos. We introduce three principal contributions. First, we develop a self-supervised model for jointly learning state-modifying actions together with the corresponding object states from an uncurated set of videos from the Internet. The model is self-supervised by the causal ordering signal, i.e., initial object state → manipulating action → end state. Second, we explore alternative multi-task network architectures and identify a model that enables efficient joint learning of multiple object states and actions, such as pouring water and pouring coffee, together. Third, we collect a new dataset, named ChangeIt, with more than 2600 hours of video and 34 thousand changes of object states. We report results on an existing instructional video dataset COIN as well as our new large-scale ChangeIt dataset containing tens of thousands of long uncurated web videos depicting various interactions such as hole drilling, cream whisking, or paper plane folding. We show that our multi-task model achieves a relative improvement of 40% over the prior methods and significantly outperforms both image-based and video-based zero-shot models for this problem 
650 4 |a Journal Article 
700 1 |a Alayrac, Jean-Baptiste  |e verfasserin  |4 aut 
700 1 |a Miech, Antoine  |e verfasserin  |4 aut 
700 1 |a Laptev, Ivan  |e verfasserin  |4 aut 
700 1 |a Sivic, Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 05. Juni, Seite 5114-5130  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:05  |g month:06  |g pages:5114-5130 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3362288  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 05  |c 06  |h 5114-5130