Multimodal Brain Tumor Segmentation Boosted by Monomodal Normal Brain Images

Many deep learning based methods have been proposed for brain tumor segmentation. Most studies focus on deep network internal structure to improve the segmentation accuracy, while valuable external information, such as normal brain appearance, is often ignored. Inspired by the fact that radiologists...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 14., Seite 1199-1210
1. Verfasser: Liu, Huabing (VerfasserIn)
Weitere Verfasser: Ni, Zhengze, Nie, Dong, Shen, Dinggang, Wang, Jinda, Tang, Zhenyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368048527
003 DE-627
005 20240214233228.0
007 cr uuu---uuuuu
008 240206s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3359815  |2 doi 
028 5 2 |a pubmed24n1293.xml 
035 |a (DE-627)NLM368048527 
035 |a (NLM)38315584 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Huabing  |e verfasserin  |4 aut 
245 1 0 |a Multimodal Brain Tumor Segmentation Boosted by Monomodal Normal Brain Images 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.02.2024 
500 |a Date Revised 14.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Many deep learning based methods have been proposed for brain tumor segmentation. Most studies focus on deep network internal structure to improve the segmentation accuracy, while valuable external information, such as normal brain appearance, is often ignored. Inspired by the fact that radiologists often screen lesion regions with normal appearance as reference in mind, in this paper, we propose a novel deep framework for brain tumor segmentation, where normal brain images are adopted as reference to compare with tumor brain images in a learned feature space. In this way, features at tumor regions, i.e., tumor-related features, can be highlighted and enhanced for accurate tumor segmentation. It is known that routine tumor brain images are multimodal, while normal brain images are often monomodal. This causes the feature comparison a big issue, i.e., multimodal vs. monomodal. To this end, we present a new feature alignment module (FAM) to make the feature distribution of monomodal normal brain images consistent/inconsistent with multimodal tumor brain images at normal/tumor regions, making the feature comparison effective. Both public (BraTS2022) and in-house tumor brain image datasets are used to evaluate our framework. Experimental results demonstrate that for both datasets, our framework can effectively improve the segmentation accuracy and outperforms the state-of-the-art segmentation methods. Codes are available at https://github.com/hb-liu/Normal-Brain-Boost-Tumor-Segmentation 
650 4 |a Journal Article 
700 1 |a Ni, Zhengze  |e verfasserin  |4 aut 
700 1 |a Nie, Dong  |e verfasserin  |4 aut 
700 1 |a Shen, Dinggang  |e verfasserin  |4 aut 
700 1 |a Wang, Jinda  |e verfasserin  |4 aut 
700 1 |a Tang, Zhenyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 14., Seite 1199-1210  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:14  |g pages:1199-1210 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3359815  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 14  |h 1199-1210