Production and characterization of protease enzyme from Acinetobacter pittii using peanut meal as substrate
A significantly high protease enzyme yield of 617 U/ml was achieved with Acinetobacter pittii as the microorganism and peanut oil meal as the substrate. Peanut oil meal, which consists of proteins (40-60%) and carbohydrates (22-30%), serves as a sufficient source of nitrogen and carbon necessary for...
Veröffentlicht in: | Environmental technology. - 1993. - 45(2024), 27 vom: 02. Nov., Seite 5808-5817 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article A. pittii Peanut oil meals milk clotting proteases Peptide Hydrolases EC 3.4.- Nitrogen N762921K75 Peanut Oil mehr... |
Zusammenfassung: | A significantly high protease enzyme yield of 617 U/ml was achieved with Acinetobacter pittii as the microorganism and peanut oil meal as the substrate. Peanut oil meal, which consists of proteins (40-60%) and carbohydrates (22-30%), serves as a sufficient source of nitrogen and carbon necessary for microbial growth and production of enzymes. Moreover, peanut meal offers the advantages of being affordable and available in large quantities, making the meal suitable for cost-effective enzyme production. In the present study, two bacterial strains and one fungal strain were selected to produce proteases utilizing peanut oil meal as the substrate. The experimental conditions during the enzyme production, including pH and temperature, were optimized. In addition, the substrate was enriched with various carbon and nitrogen sources. The microbial strains were streaked on nutritional agar (for bacteria) and potato dextrose agar (for fungus). Following an incubation period, the plates were stored at 4°C for further studies. The molecular weight of partially purified proteases of Acinetobacter pittii was found to be ≅ 95.5 kDa. Potassium nitrate was the most ideal nitrogen source (up to 411% increase in activity) and fructose was the best carbon source (425% increase). These enzymes exhibited excellent temperature tolerance and were capable of functioning over a wide pH range. Furthermore, the obtained proteases demonstrated ability to coagulate milk effectively, indicating their potential for various food-related applications |
---|---|
Beschreibung: | Date Completed 01.12.2024 Date Revised 01.12.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2024.2309471 |