|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM367974924 |
003 |
DE-627 |
005 |
20250305183125.0 |
007 |
cr uuu---uuuuu |
008 |
240203s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202313096
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1226.xml
|
035 |
|
|
|a (DE-627)NLM367974924
|
035 |
|
|
|a (NLM)38308111
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gu, Fan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a External Field-Responsive Ternary Non-Noble Metal Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.05.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Despite the increasing effort in advancing oxygen electrocatalysts for zinc-air batteries (ZABs), the performance development gradually reaches a plateau via only ameliorating the electrocatalyst materials. Herein, a new class of external field-responsive electrocatalyst comprising Ni0.5Mn0.5Fe2O4 stably dispersed on N-doped Ketjenblack (Ni0.5Mn0.5Fe2O4/N-KB) is developed via polymer-assisted strategy for practical ZABs. Briefly, the activity indicator ΔE is significantly decreased to 0.618 V upon photothermal assistance, far exceeding most reported electrocatalysts (generally >0.680 V). As a result, the photothermal electrocatalyst possesses comprehensive merits of excellent power density (319 mW cm-2), ultralong lifespan (5163 cycles at 25 mA cm-2), and outstanding rate performance (100 mA cm-2) for liquid ZABs, and superb temperature and deformation adaptability for flexible ZABs. Such improvement is attributed to the photothermal-heating-enabled synergy of promoted electrical conductivity, reactant-molecule motion, active area, and surface reconstruction, as revealed by operando Raman and simulation. The findings open vast possibilities toward more-energy-efficient energy applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a external field‐responsiveness
|
650 |
|
4 |
|a low‐temperature adaptability
|
650 |
|
4 |
|a operando Raman
|
650 |
|
4 |
|a surface reconstruction
|
650 |
|
4 |
|a zinc‐air batteries
|
700 |
1 |
|
|a Guo, Wengai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yuan, Yifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Ya-Ping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Huile
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jichang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zhongwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Shuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yihuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Shun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 19 vom: 03. Mai, Seite e2313096
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:19
|g day:03
|g month:05
|g pages:e2313096
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202313096
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 19
|b 03
|c 05
|h e2313096
|