MemeNet : Toward a Reliable Local Projection for Image Recognition via Semantic Featurization

When we recognize images with the help of Artificial Neural Networks (ANNs), we often wonder how they make decisions. A widely accepted solution is to point out local features as decisive evidence. A question then arises: Can local features in the latent space of an ANN explain the model output to s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 1670-1682
1. Verfasser: Tang, Jiacheng (VerfasserIn)
Weitere Verfasser: Kang, Qi, Zhou, Mengchu, Yin, Hao, Yao, Siya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367956489
003 DE-627
005 20240306232823.0
007 cr uuu---uuuuu
008 240203s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3359331  |2 doi 
028 5 2 |a pubmed24n1318.xml 
035 |a (DE-627)NLM367956489 
035 |a (NLM)38306266 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Jiacheng  |e verfasserin  |4 aut 
245 1 0 |a MemeNet  |b Toward a Reliable Local Projection for Image Recognition via Semantic Featurization 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a When we recognize images with the help of Artificial Neural Networks (ANNs), we often wonder how they make decisions. A widely accepted solution is to point out local features as decisive evidence. A question then arises: Can local features in the latent space of an ANN explain the model output to some extent? In this work, we propose a modularized framework named MemeNet that can construct a reliable surrogate from a Convolutional Neural Network (CNN) without changing its perception. Inspired by the idea of time series classification, this framework recognizes images in two steps. First, local representations named memes are extracted from the activation map of a CNN model. Then an image is transformed into a series of understandable features. Experimental results show that MemeNet can achieve accuracy comparable to most models' through a set of reliable features and a simple classifier. Thus, it is a promising interface to use the internal dynamics of CNN, which represents a novel approach to constructing reliable models 
650 4 |a Journal Article 
700 1 |a Kang, Qi  |e verfasserin  |4 aut 
700 1 |a Zhou, Mengchu  |e verfasserin  |4 aut 
700 1 |a Yin, Hao  |e verfasserin  |4 aut 
700 1 |a Yao, Siya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 1670-1682  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:1670-1682 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3359331  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 1670-1682