A Two-Stage Noise-Tolerant Paradigm for Label Corrupted Person Re-Identification

Supervised person re-identification (Re-ID) approaches are sensitive to label corrupted data, which is inevitable and generally ignored in the field of person Re-ID. In this paper, we propose a two-stage noise-tolerant paradigm (TSNT) for labeling corrupted person Re-ID. Specifically, at stage one,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 13. Juli, Seite 4944-4956
1. Verfasser: Liu, Min (VerfasserIn)
Weitere Verfasser: Wang, Fei, Wang, Xueping, Wang, Yaonan, Roy-Chowdhury, Amit K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367956462
003 DE-627
005 20250305182852.0
007 cr uuu---uuuuu
008 240203s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3361491  |2 doi 
028 5 2 |a pubmed25n1226.xml 
035 |a (DE-627)NLM367956462 
035 |a (NLM)38306260 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Min  |e verfasserin  |4 aut 
245 1 2 |a A Two-Stage Noise-Tolerant Paradigm for Label Corrupted Person Re-Identification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Supervised person re-identification (Re-ID) approaches are sensitive to label corrupted data, which is inevitable and generally ignored in the field of person Re-ID. In this paper, we propose a two-stage noise-tolerant paradigm (TSNT) for labeling corrupted person Re-ID. Specifically, at stage one, we present a self-refining strategy to separately train each network in TSNT by concentrating more on pure samples. These pure samples are progressively refurbished via mining the consistency between annotations and predictions. To enhance the tolerance of TSNT to noisy labels, at stage two, we employ a co-training strategy to collaboratively supervise the learning of the two networks. Concretely, a rectified cross-entropy loss is proposed to learn the mutual information from the peer network by assigning large weights to the refurbished reliable samples. Moreover, a noise-robust triplet loss is formulated for further improving the robustness of TSNT by increasing inter-class distances and reducing intra-class distances in the label-corrupted dataset, where a constraint condition for reliability discrimination is carefully designed to select reliable triplets. Extensive experiments demonstrate the superiority of TSNT, for instance, on the Market1501 dataset, our paradigm achieves 90.3% rank-1 accuracy (6.2% improvement over the state-of-the-art method) under noise ratio 20% 
650 4 |a Journal Article 
700 1 |a Wang, Fei  |e verfasserin  |4 aut 
700 1 |a Wang, Xueping  |e verfasserin  |4 aut 
700 1 |a Wang, Yaonan  |e verfasserin  |4 aut 
700 1 |a Roy-Chowdhury, Amit K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 13. Juli, Seite 4944-4956  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:13  |g month:07  |g pages:4944-4956 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3361491  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 13  |c 07  |h 4944-4956