Molecular Motor-Driven Light-Controlled Logic-Gated K+ Channel for Cancer Cell Apoptosis

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 19 vom: 01. Mai, Seite e2312352
1. Verfasser: Li, Cong (VerfasserIn)
Weitere Verfasser: Wu, Yaqi, Zhu, Yihang, Yan, Jing, Liu, Shengda, Xu, Jiayun, Fa, Shixin, Yan, Tengfei, Zhu, Dingcheng, Yan, Yi, Liu, Junqiu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article logic gates molecular motors step‐wise regulate K+ transport and apoptosis Potassium RWP5GA015D Potassium Channels Liposomes
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Developing artificial ion transport systems, which process complicated information and step-wise regulate properties, is essential for deeply comprehending the subtle dynamic behaviors of natural channel proteins (NCPs). Here a photo-controlled logic-gated K+ channel based on single-chain random heteropolymers containing molecular motors, exhibiting multi-core processor-like properties to step-wise control ion transport is reported. Designed with oxygen, deoxygenation, and different wavelengths of light as input signals, complicated logical circuits comprising "YES", "AND", "OR" and "NOT" gate components are established. Implementing these logical circuits with K+ transport efficiencies as output signals, multiple state transitions including "ON", "Partially OFF" and "Totally OFF" in liposomes and cancer cells are realized, further causing step-wise anticancer treatments. Dramatic K+ efflux in the "ON" state (decrease by 50% within 7 min) significantly induces cancer cell apoptosis. This integrated logic-gated strategy will be expanded toward understanding the delicate mechanism underlying NCPs and treating cancer or other diseases is expected
Beschreibung:Date Completed 09.05.2024
Date Revised 09.05.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202312352