Exploiting Optical Flow Guidance for Transformer-Based Video Inpainting

Transformers have been widely used for video processing owing to the multi-head self attention (MHSA) mechanism. However, the MHSA mechanism encounters an intrinsic difficulty for video inpainting, since the features associated with the corrupted regions are degraded and incur inaccurate self attent...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 30. Juni, Seite 4977-4992
1. Verfasser: Zhang, Kaidong (VerfasserIn)
Weitere Verfasser: Peng, Jialun, Fu, Jingjing, Liu, Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367901803
003 DE-627
005 20240606232337.0
007 cr uuu---uuuuu
008 240202s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3361010  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM367901803 
035 |a (NLM)38300784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Kaidong  |e verfasserin  |4 aut 
245 1 0 |a Exploiting Optical Flow Guidance for Transformer-Based Video Inpainting 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Transformers have been widely used for video processing owing to the multi-head self attention (MHSA) mechanism. However, the MHSA mechanism encounters an intrinsic difficulty for video inpainting, since the features associated with the corrupted regions are degraded and incur inaccurate self attention. This problem, termed query degradation, may be mitigated by first completing optical flows and then using the flows to guide the self attention, which was verified in our previous work - flow-guided transformer (FGT). We further exploit the flow guidance and propose FGT++ to pursue more effective and efficient video inpainting. First, we design a lightweight flow completion network by using local aggregation and edge loss. Second, to address the query degradation, we propose a flow guidance feature integration module, which uses the motion discrepancy to enhance the features, together with a flow-guided feature propagation module that warps the features according to the flows. Third, we decouple the transformer along the temporal and spatial dimensions, where flows are used to select the tokens through a temporally deformable MHSA mechanism, and global tokens are combined with the inner-window local tokens through a dual-perspective MHSA mechanism. FGT++ is experimentally evaluated to be outperforming the existing video inpainting networks qualitatively and quantitatively 
650 4 |a Journal Article 
700 1 |a Peng, Jialun  |e verfasserin  |4 aut 
700 1 |a Fu, Jingjing  |e verfasserin  |4 aut 
700 1 |a Liu, Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 30. Juni, Seite 4977-4992  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:30  |g month:06  |g pages:4977-4992 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3361010  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 30  |c 06  |h 4977-4992