On the Number of Linear Regions of Convolutional Neural Networks With Piecewise Linear Activations

One fundamental problem in deep learning is understanding the excellent performance of deep Neural Networks (NNs) in practice. An explanation for the superiority of NNs is that they can realize a large family of complicated functions, i.e., they have powerful expressivity. The expressivity of a Neur...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 01. Juni, Seite 5131-5148
1. Verfasser: Xiong, Huan (VerfasserIn)
Weitere Verfasser: Huang, Lei, Zang, Wenston J T, Zhen, Xiantong, Xie, Guo-Sen, Gu, Bin, Song, Le
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36790179X
003 DE-627
005 20240606232338.0
007 cr uuu---uuuuu
008 240202s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3361155  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM36790179X 
035 |a (NLM)38300783 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiong, Huan  |e verfasserin  |4 aut 
245 1 0 |a On the Number of Linear Regions of Convolutional Neural Networks With Piecewise Linear Activations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a One fundamental problem in deep learning is understanding the excellent performance of deep Neural Networks (NNs) in practice. An explanation for the superiority of NNs is that they can realize a large family of complicated functions, i.e., they have powerful expressivity. The expressivity of a Neural Network with Piecewise Linear activations (PLNN) can be quantified by the maximal number of linear regions it can separate its input space into. In this paper, we provide several mathematical results needed for studying the linear regions of Convolutional Neural Networks with Piecewise Linear activations (PLCNNs), and use them to derive the maximal and average numbers of linear regions for one-layer PLCNNs. Furthermore, we obtain upper and lower bounds for the number of linear regions of multi-layer PLCNNs. Our results suggest that deeper PLCNNs have more powerful expressivity than shallow PLCNNs, while PLCNNs have more expressivity than fully-connected PLNNs per parameter, in terms of the number of linear regions 
650 4 |a Journal Article 
700 1 |a Huang, Lei  |e verfasserin  |4 aut 
700 1 |a Zang, Wenston J T  |e verfasserin  |4 aut 
700 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
700 1 |a Xie, Guo-Sen  |e verfasserin  |4 aut 
700 1 |a Gu, Bin  |e verfasserin  |4 aut 
700 1 |a Song, Le  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 01. Juni, Seite 5131-5148  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:01  |g month:06  |g pages:5131-5148 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3361155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 01  |c 06  |h 5131-5148