Emotional Video Captioning With Vision-Based Emotion Interpretation Network

Effectively summarizing and re-expressing video content by natural languages in a more human-like fashion is one of the key topics in the field of multimedia content understanding. Despite good progress made in recent years, existing efforts usually overlooked the emotions in user-generated videos,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 1122-1135
1. Verfasser: Song, Peipei (VerfasserIn)
Weitere Verfasser: Guo, Dan, Yang, Xun, Tang, Shengeng, Wang, Meng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367901749
003 DE-627
005 20240207232309.0
007 cr uuu---uuuuu
008 240202s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3359045  |2 doi 
028 5 2 |a pubmed24n1283.xml 
035 |a (DE-627)NLM367901749 
035 |a (NLM)38300778 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Peipei  |e verfasserin  |4 aut 
245 1 0 |a Emotional Video Captioning With Vision-Based Emotion Interpretation Network 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2024 
500 |a Date Revised 07.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Effectively summarizing and re-expressing video content by natural languages in a more human-like fashion is one of the key topics in the field of multimedia content understanding. Despite good progress made in recent years, existing efforts usually overlooked the emotions in user-generated videos, thus making the generated sentence a bit boring and soulless. To fill the research gap, this paper presents a novel emotional video captioning framework in which we design a Vision-based Emotion Interpretation Network to effectively capture the emotions conveyed in videos and describe the visual content in both factual and emotional languages. Specifically, we first model the emotion distribution over an open psychological vocabulary to predict the emotional state of videos. Then, guided by the discovered emotional state, we incorporate visual context, textual context, and visual-textual relevance into an aggregated multimodal contextual vector to enhance video captioning. Furthermore, we optimize the network in a new emotion-fact coordinated way that involves two losses- Emotional Indication Loss and Factual Contrastive Loss, which penalize the error of emotion prediction and visual-textual factual relevance, respectively. In other words, we innovatively introduce emotional representation learning into an end-to-end video captioning network. Extensive experiments on public benchmark datasets, EmVidCap and EmVidCap-S, demonstrate that our method can significantly outperform the state-of-the-art methods by a large margin. Quantitative ablation studies and qualitative analyses clearly show that our method is able to effectively capture the emotions in videos and thus generate emotional language sentences to interpret the video content 
650 4 |a Journal Article 
700 1 |a Guo, Dan  |e verfasserin  |4 aut 
700 1 |a Yang, Xun  |e verfasserin  |4 aut 
700 1 |a Tang, Shengeng  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 1122-1135  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:1122-1135 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3359045  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 1122-1135