Light dependent differentiation of outdoors developed purple eggplant (Solanum melongena L.) pericarp layers : Leaf chlorenchyma characteristics of the pericarp layers dissected in the dark
Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 207(2024) vom: 20. Feb., Seite 108394 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Eggplant Etioplast Fruit pericarp Natural etiolation Protochlorophyllide Solanum melongena L. Chlorophyll 1406-65-1 |
Zusammenfassung: | Copyright © 2024 Elsevier Masson SAS. All rights reserved. To interpret the final steps of chlorophyll biosynthesis, detailed knowledge of etiolation symptoms is necessary. Most of our knowledge originates from studies on plant materials grown in complete darkness. Hardly any information is available about the plastid development in internal parenchyma cells of fleshy fruits in which the food supply is almost unlimited. In this work, etiolation symptoms were studied in pericarp layers of purple eggplant (Solanum melongena L.). Tissue layers of fruits developed under open-air conditions and of etiolated fruits were dissected in a dark room. Transmission and 77 K fluorescence spectroscopy and ultrastructural studies were performed. Photosynthetic activities were measured and pigment contents were determined in light-grown fruits. The purple exocarp and a 1-1.5 cm wide green mesocarp layer of large fruits fully shade the internal pericarp layers, thus protochloropyll (ide) accumulated, flash-photoactive 644 and 655 nm emitting protochlorophyllide complexes, and only small amounts of chlorophylls were found. Photosynthetic activity was detected only in the external, green layer, which had fully developed chloroplasts, and showed 77 K fluorescence emission spectra characteristic for green leaves. The innermost endocarp regions and the etiolated fruits contained mainly protochlorophyll (ide), proplastids, and etioplasts, i.e. they showed etiolation symptoms. These symptoms correspond to those of leaves of dark-grown seedlings but are stable for long periods due to the almost unlimited nourishment supply from storage parenchyma cells. These results prove that the laboratory works with artificially dark-developed plant materials are good models of natural chlorophyll biosynthesis and plastid development |
---|---|
Beschreibung: | Date Completed 18.03.2024 Date Revised 18.03.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2024.108394 |