Event Graph Guided Compositional Spatial-Temporal Reasoning for Video Question Answering

Video question answering (VideoQA) is challenging since it requires the model to extract and combine multi-level visual concepts from local objects to global actions from complex events for compositional reasoning. Existing works represent the video with fixed-duration clip features that make the mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 02., Seite 1109-1121
1. Verfasser: Bai, Ziyi (VerfasserIn)
Weitere Verfasser: Wang, Ruiping, Gao, Difei, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Video question answering (VideoQA) is challenging since it requires the model to extract and combine multi-level visual concepts from local objects to global actions from complex events for compositional reasoning. Existing works represent the video with fixed-duration clip features that make the model struggle in capturing the crucial concepts in multiple granularities. To overcome this shortcoming, we propose to represent the video with an Event Graph in a hierarchical structure whose nodes correspond to visual concepts of different levels (object, relation, scene and action) and edges indicate their spatial-temporal relationships. We further propose a H ierarchical S patial- T emporal T ransformer (HSTT) which takes nodes from the graph as visual input to realize compositional reasoning guided by the event graph. To fully exploit the spatial-temporal context delivered from the graph structure, on the one hand, we encode the nodes in the order of their semantic hierarchy (depth) and occurrence time (breadth) with our improved graph search algorithm; On the other hand, we introduce edge-guided attention to combine the spatial-temporal context among nodes according to their edge connections. HSTT then performs QA by cross-modal interactions guaranteed by the hierarchical correspondence between the multi-level event graph and the cross-level question. Experiments on the recent challenging AGQA and STAR datasets show that the proposed method clearly outperforms the existing VideoQA models by a large margin, including those pre-trained with large-scale external data. Our code is available at https://github.com/ByZ0e/HSTT
Beschreibung:Date Revised 05.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3358726