RNNPose : 6-DoF Object Pose Estimation via Recurrent Correspondence Field Estimation and Pose Optimization

6-DoF object pose estimation from a monocular image is a challenging problem, where a post-refinement procedure is generally needed for high-precision estimation. In this paper, we propose a framework, dubbed RNNPose, based on a recurrent neural network (RNN) for object pose refinement, which is rob...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 30. Juli, Seite 4669-4683
1. Verfasser: Xu, Yan (VerfasserIn)
Weitere Verfasser: Lin, Kwan-Yee, Zhang, Guofeng, Wang, Xiaogang, Li, Hongsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367801957
003 DE-627
005 20250305180644.0
007 cr uuu---uuuuu
008 240131s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3360181  |2 doi 
028 5 2 |a pubmed25n1225.xml 
035 |a (DE-627)NLM367801957 
035 |a (NLM)38289852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yan  |e verfasserin  |4 aut 
245 1 0 |a RNNPose  |b 6-DoF Object Pose Estimation via Recurrent Correspondence Field Estimation and Pose Optimization 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 6-DoF object pose estimation from a monocular image is a challenging problem, where a post-refinement procedure is generally needed for high-precision estimation. In this paper, we propose a framework, dubbed RNNPose, based on a recurrent neural network (RNN) for object pose refinement, which is robust to erroneous initial poses and occlusions. During the recurrent iterations, object pose refinement is formulated as a non-linear least squares problem based on the estimated correspondence field (between a rendered image and the observed image). The problem is then solved by a differentiable Levenberg-Marquardt (LM) algorithm enabling end-to-end training. The correspondence field estimation and pose refinement are conducted alternately in each iteration to improve the object poses. Furthermore, to improve the robustness against occlusion, we introduce a consistency-check mechanism based on the learned descriptors of the 3D model and observed 2D images, which downweights the unreliable correspondences during pose optimization. We evaluate RNNPose on several public datasets, including LINEMOD, Occlusion-LINEMOD, YCB-Video and TLESS. We demonstrate state-of-the-art performance and strong robustness against severe clutter and occlusion in the scenes. Extensive experiments validate the effectiveness of our proposed method. Besides, the extended system based on RNNPose successfully generalizes to multi-instance scenarios and achieves top-tier performance on the TLESS dataset 
650 4 |a Journal Article 
700 1 |a Lin, Kwan-Yee  |e verfasserin  |4 aut 
700 1 |a Zhang, Guofeng  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Li, Hongsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 30. Juli, Seite 4669-4683  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:30  |g month:07  |g pages:4669-4683 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3360181  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 30  |c 07  |h 4669-4683