Molecular Engineering Enables Hydrogel Electrolyte with Ionic Hopping Migration and Self-Healability toward Dendrite-Free Zinc-Metal Anodes

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 19 vom: 01. Mai, Seite e2311082
1. Verfasser: Zhu, Kaiping (VerfasserIn)
Weitere Verfasser: Luo, Jie, Zhang, Dehe, Wang, Nanyang, Pan, Shibo, Zhou, Shujin, Zhang, Zhenjie, Guo, Gengde, Yang, Peng, Fan, Yuan, Hou, Shisheng, Shao, Zhipeng, Liu, Shizhuo, Lin, Lin, Xue, Pan, Hong, Guo, Yang, Yurong, Yao, Yagang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article dendrite‐free Zn‐metal anode hydrogel electrolytes ionic hopping migration molecular engineering self‐healability
LEADER 01000caa a22002652 4500
001 NLM367791978
003 DE-627
005 20240510232616.0
007 cr uuu---uuuuu
008 240130s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202311082  |2 doi 
028 5 2 |a pubmed24n1403.xml 
035 |a (DE-627)NLM367791978 
035 |a (NLM)38288858 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Kaiping  |e verfasserin  |4 aut 
245 1 0 |a Molecular Engineering Enables Hydrogel Electrolyte with Ionic Hopping Migration and Self-Healability toward Dendrite-Free Zinc-Metal Anodes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Hydrogel electrolytes (HEs), characterized by intrinsic safety, mechanical stability, and biocompatibility, can promote the development of flexible aqueous zinc-ion batteries (FAZIBs). However, current FAZIB technology is severely restricted by the uncontrollable dendrite growth arising from undesirable reactions between the HEs with sluggish ionic conductivity and Zn metal. To overcome this challenge, this work proposes a molecular engineering strategy, which involves the introduction of oxygen-rich poly(urea-urethane) (OR-PUU) into polyacrylamide (PAM)-based HEs. The OR-PUU/PAM HEs facilitate rapid ion transfer through their ionic hopping migration mechanism, resulting in uniform and orderly Zn2+ deposition. The abundant polar groups on the OR-PUU molecules in OR-PUU/PAM HEs break the inherent H-bond network, tune the solvation structure of hydrated Zn2+, and inhibit the occurrence of side reactions. Moreover, the interaction of hierarchical H-bonds in the OR-PUU/PAM HEs endows them with self-healability, enabling in situ repair of cracks induced by plating/stripping. Consequently, Zn symmetric cells incorporating the novel OR-PUU/PAM HEs exhibit a long cycling life of 2000 h. The resulting Zn-MnO2 battery displays a low capacity decay rate of 0.009% over 2000 cycles at 2000 mA g-1. Overall, this work provides valuable insights to facilitate the realization of dendrite-free Zn-metal anodes through the molecular engineering of HEs 
650 4 |a Journal Article 
650 4 |a dendrite‐free Zn‐metal anode 
650 4 |a hydrogel electrolytes 
650 4 |a ionic hopping migration 
650 4 |a molecular engineering 
650 4 |a self‐healability 
700 1 |a Luo, Jie  |e verfasserin  |4 aut 
700 1 |a Zhang, Dehe  |e verfasserin  |4 aut 
700 1 |a Wang, Nanyang  |e verfasserin  |4 aut 
700 1 |a Pan, Shibo  |e verfasserin  |4 aut 
700 1 |a Zhou, Shujin  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhenjie  |e verfasserin  |4 aut 
700 1 |a Guo, Gengde  |e verfasserin  |4 aut 
700 1 |a Yang, Peng  |e verfasserin  |4 aut 
700 1 |a Fan, Yuan  |e verfasserin  |4 aut 
700 1 |a Hou, Shisheng  |e verfasserin  |4 aut 
700 1 |a Shao, Zhipeng  |e verfasserin  |4 aut 
700 1 |a Liu, Shizhuo  |e verfasserin  |4 aut 
700 1 |a Lin, Lin  |e verfasserin  |4 aut 
700 1 |a Xue, Pan  |e verfasserin  |4 aut 
700 1 |a Hong, Guo  |e verfasserin  |4 aut 
700 1 |a Yang, Yurong  |e verfasserin  |4 aut 
700 1 |a Yao, Yagang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 19 vom: 01. Mai, Seite e2311082  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:19  |g day:01  |g month:05  |g pages:e2311082 
856 4 0 |u http://dx.doi.org/10.1002/adma.202311082  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 19  |b 01  |c 05  |h e2311082