A Robust Framework for One-Shot Key Information Extraction via Deep Partial Graph Matching

Text field labelling plays a key role in Key Information Extraction (KIE) from structured document images. However, existing methods ignore the field drift and outlier problems, which limit their performance and make them less robust. This paper casts the text field labelling problem into a partial...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 1070-1079
1. Verfasser: Yao, Minghong (VerfasserIn)
Weitere Verfasser: Liu, Zhiguang, Zhuang, Liansheng, Wang, Liangwei, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367759888
003 DE-627
005 20240206232139.0
007 cr uuu---uuuuu
008 240130s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3357251  |2 doi 
028 5 2 |a pubmed24n1282.xml 
035 |a (DE-627)NLM367759888 
035 |a (NLM)38285573 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao, Minghong  |e verfasserin  |4 aut 
245 1 2 |a A Robust Framework for One-Shot Key Information Extraction via Deep Partial Graph Matching 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Text field labelling plays a key role in Key Information Extraction (KIE) from structured document images. However, existing methods ignore the field drift and outlier problems, which limit their performance and make them less robust. This paper casts the text field labelling problem into a partial graph matching problem and proposes an end-to-end trainable framework called Deep Partial Graph Matching (dPGM) for the one-shot KIE task. It represents each document as a graph and estimates the correspondence between text fields from different documents by maximizing the graph similarity of different documents. Our framework obtains a strict one-to-one correspondence by adopting a combinatorial solver module with an extra one-to-(at most)-one mapping constraint to do the exact graph matching, which leads to the robustness of the field drift problem and the outlier problem. Finally, a large one-shot KIE dataset named DKIE is collected and annotated to promote research of the KIE task. This dataset will be released to the research and industry communities. Extensive experiments on both the public and our new DKIE datasets show that our method can achieve state-of-the-art performance and is more robust than existing methods 
650 4 |a Journal Article 
700 1 |a Liu, Zhiguang  |e verfasserin  |4 aut 
700 1 |a Zhuang, Liansheng  |e verfasserin  |4 aut 
700 1 |a Wang, Liangwei  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 26., Seite 1070-1079  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:26  |g pages:1070-1079 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3357251  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 26  |h 1070-1079