A Deep Stochastic Adaptive Fourier Decomposition Network for Hyperspectral Image Classification

Deep learning-based hyperspectral image (HSI) classification methods have recently shown excellent performance, however, there are two shortcomings that need to be addressed. One is that deep network training requires a large number of labeled images, and the other is that deep network needs to lear...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 1080-1094
1. Verfasser: Cheng, Chunbo (VerfasserIn)
Weitere Verfasser: Zhang, Liming, Li, Hong, Dai, Lei, Cui, Wenjing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367759845
003 DE-627
005 20240206232139.0
007 cr uuu---uuuuu
008 240130s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3357250  |2 doi 
028 5 2 |a pubmed24n1282.xml 
035 |a (DE-627)NLM367759845 
035 |a (NLM)38285575 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Chunbo  |e verfasserin  |4 aut 
245 1 2 |a A Deep Stochastic Adaptive Fourier Decomposition Network for Hyperspectral Image Classification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning-based hyperspectral image (HSI) classification methods have recently shown excellent performance, however, there are two shortcomings that need to be addressed. One is that deep network training requires a large number of labeled images, and the other is that deep network needs to learn a large number of parameters. They are also general problems of deep networks, especially in applications that require professional techniques to acquire and label images, such as HSI and medical images. In this paper, we propose a deep network architecture (SAFDNet) based on the stochastic adaptive Fourier decomposition (SAFD) theory. SAFD has powerful unsupervised feature extraction capabilities, so the entire deep network only requires a small number of annotated images to train the classifier. In addition, we use fewer convolution kernels in the entire deep network, which greatly reduces the number of deep network parameters. SAFD is a newly developed signal processing tool with solid mathematical foundation, which is used to construct the unsupervised deep feature extraction mechanism of SAFDNet. Experimental results on three popular HSI classification datasets show that our proposed SAFDNet outperforms other compared state-of-the-art deep learning methods in HSI classification 
650 4 |a Journal Article 
700 1 |a Zhang, Liming  |e verfasserin  |4 aut 
700 1 |a Li, Hong  |e verfasserin  |4 aut 
700 1 |a Dai, Lei  |e verfasserin  |4 aut 
700 1 |a Cui, Wenjing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 1080-1094  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:1080-1094 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3357250  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 1080-1094