HomPINNs : homotopy physics-informed neural networks for solving the inverse problems of nonlinear differential equations with multiple solutions

Due to the complex behavior arising from non-uniqueness, symmetry, and bifurcations in the solution space, solving inverse problems of nonlinear differential equations (DEs) with multiple solutions is a challenging task. To address this, we propose homotopy physics-informed neural networks (HomPINNs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 500(2024) vom: 01. März
1. Verfasser: Zheng, Haoyang (VerfasserIn)
Weitere Verfasser: Huang, Yao, Huang, Ziyang, Hao, Wenrui, Lin, Guang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Homotopy continuation method Machine learning Multiple solutions Nonlinear differential equations Physics-informed neural networks