Model averaging in calibration of near-infrared instruments with correlated high-dimensional data

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 51(2024), 2 vom: 14., Seite 279-297
Auteur principal: Salaki, Deiby Tineke (Auteur)
Autres auteurs: Kurnia, Anang, Sartono, Bagus, Mangku, I Wayan, Gusnanto, Arief
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Model averaging calibration high-dimensional data multicollinearity near-infrared spectroscopy
LEADER 01000caa a22002652c 4500
001 NLM36773463X
003 DE-627
005 20250305175714.0
007 cr uuu---uuuuu
008 240129s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2122947  |2 doi 
028 5 2 |a pubmed25n1225.xml 
035 |a (DE-627)NLM36773463X 
035 |a (NLM)38283051 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Salaki, Deiby Tineke  |e verfasserin  |4 aut 
245 1 0 |a Model averaging in calibration of near-infrared instruments with correlated high-dimensional data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Model averaging (MA) is a modelling strategy where the uncertainty in the configuration of selected variables is taken into account by weight-combining each estimate of the so-called 'candidate model'. Some studies have shown that MA enables better prediction, even in high-dimensional cases. However, little is known about the model prediction performance at different types of multicollinearity in high-dimensional data. Motivated by calibration of near-infrared (NIR) instruments,we focus on MA prediction performance in such data. The weighting schemes that we consider are based on the Akaike's information criterion (AIC), Mallows' Cp, and cross-validation. For estimating the model parameters, we consider the standard least squares and the ridge regression methods. The results indicate that MA outperforms model selection methods such as LASSO and SCAD in high-correlation data. The use of Mallows' Cp and cross-validation for the weights tends to yield similar results in all structures of correlation, although the former is generally preferred. We also find that the ridge model averaging outperforms the least-squares model averaging. This research suggests ridge model averaging to build a relatively better prediction of the NIR calibration model 
650 4 |a Journal Article 
650 4 |a Model averaging 
650 4 |a calibration 
650 4 |a high-dimensional data 
650 4 |a multicollinearity 
650 4 |a near-infrared spectroscopy 
700 1 |a Kurnia, Anang  |e verfasserin  |4 aut 
700 1 |a Sartono, Bagus  |e verfasserin  |4 aut 
700 1 |a Mangku, I Wayan  |e verfasserin  |4 aut 
700 1 |a Gusnanto, Arief  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 2 vom: 14., Seite 279-297  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:51  |g year:2024  |g number:2  |g day:14  |g pages:279-297 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2122947  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 2  |b 14  |h 279-297